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a b s t r a c t

In this paper, we investigate global dissipativity of a class of fractional-order neural networks (FNNs)
with time delays and discontinuous activations. The relevant results are in the sense of Caputo's frac-
tional derivation. The existence of global solutions in Filippov's sense can be guaranteed by using non-
smooth analysis, differential inclusion theory and the properties of fractional calculus. Based on com-
parison theorem and stability theorem for a class of fractional-order systems with time delays, some new
sufficient conditions are derived to ensure dissipativity of solutions, meanwhile, the globally attractive
set is given. The obtained results enrich and enhance the earlier reports. Finally, two numerical examples
are given to demonstrate the effectiveness of the obtained results.

& 2016 Published by Elsevier B.V.

1. Introduction

Fractional-order neural networks (FNNs), as a kind of important
biological networks, have received considerable attentions [1–6].
On the one hand, fractional derivatives have non-locality and weak
singularity. More importantly, compared with the classical integer-
order derivatives, fractional-order derivatives provide an excellent
instrument for the description of memory and hereditary properties
of various materials and processes [7–10]. On the other hand, FNNs
have infinite memory, and fractional-order parameters can enrich
the system performance by increasing one degree of freedom
[11–13]. It is generally known that time delays are unavoidable in
hardware implementation due to finite switching speed of the
amplifiers and communication time. In addition, the existence of
time delays may lead to some complex dynamic behaviors such as
oscillation, divergence, chaos, instability, or other poor performance
of the neural networks. Therefore, it is valuable and practical to
investigate FNNs with time delays.

To the best of our knowledge, most results of FNNs were estab-
lished on the premise of Lipschitz-continuous activations. In fact,
discontinuous activations have been proved really useful as an ideal
model of activations with very-high gain, and such models have been
frequently applied to solve constrained optimization problems via a
sliding mode approach [14,15]. What is more, Forti and Nistri have

pointed out that neural networks with discontinuous activations
were frequently encountered in the applications in [16], such as
impacting machines, systems oscillating under the effect of an
earthquake and dry friction [17–19]. Subsequently, more and more
researchers pay more attentions to studying neural networks with
discontinuous activations, such as [17,20–24]. Nevertheless, these
results were built in the case of integer-order cases. As the well-
studied integer-order systems are the special cases of the fractional-
order systems, and the fractional-order models can describe the
systems more precise than the integer-order models in practice.
Therefore, it is necessary to consider discontinuous activations in the
dynamic analysis of FNNs.

Dissipativity, which is introduced in the early 1970s, is an
important property of dynamical systems. The concept of dis-
sipativity in dynamical systems is more general and generalizes
the idea of a Lyapunov function. In addition, it has found appli-
cations in the areas such as stability theory, chaos and synchro-
nization theory, system norm estimation, and robust control
[25,26]. Although dissipativity analysis has long been studied in
theory and applications of integer-order neural networks [27–32],
few authors have discussed the dissipativity of FNNs.

Based on above motivations, in this paper, we introduce a class
of FNNs with time delays and discontinuous activations, and
investigate the global dissipativity of such system. More precisely,
the contributions of this paper are described below:

(1) Owing to the discontinuities of activations, we introduce
the concept of Filippov solution in the sense of Caputo's fractional
derivation. Furthermore, based on nonsmooth analysis and dif-
ferential inclusion theory, we investigate the existence of global
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solution in the sense of Filippov for FNNs with time delays and
discontinuous activations.

(2) By employing comparison theorem and stability theorem
for a class of fractional-order systems with time delays, some
sufficient criteria for global dissipativity of FNNs with time delays
and discontinuous activations are presented.

(3) Most results of FNNs have not considered time delays and
discontinuous activations, but our results make it up.

(4) Compared with the previous results, the well-studied
integer-order neural networks are the special cases of the FNNs.
Moreover, we extend the results of fractional-order delayed neural
networks with continuous activations [33]. So the results in this
paper are less conservative and more general.

The organization of this paper is as follows. The systems and
some preliminaries are introduced in Section 2. In Section 3, suf-
ficient criteria are established by using the theory of fractional-
order differential equations with discontinuous right-hand sides,
comparison theorem and stability theorem for a class of fractional-
order systems with time delays. Then, numerical simulations are
given to demonstrate the effectiveness of the obtained results in
Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries and system description

Notations: Through this paper, R is the space of real number,
Rþ denotes the set of all nonnegative real numbers, Nþ is the set
of positive integers, and Rn denotes the n-dimensional Euclidean
space. ½�; �� represents the interval. a.a. implies almost all. If xARn,
we have JxJ1 ¼

Pn
i ¼ 1 jxi j . If F : E↪Rn ðE�RnÞ is a set-valued

map, we have JFðxÞJ ¼ supγA FðxÞ Jγ J1. In addition, Cr ½t0; þ1Þ;Rð Þ
denotes the space consisting of r-order continuous differentiable
functions from ½t0; þ1Þ into R.

In this section, we report a number of definitions and proper-
ties concerning fractional calculation, which are needed in the
development. In addition, some useful lemmas are presented.

2.1. Caputo fractional-order derivative

Definition 1 (Kilbas et al. [34]). The fractional-order integral of
order α for an integrable function f ðtÞ : ½t0; þ1Þ-R is defined as

Iαf ðtÞ ¼ 1
ΓðαÞ

Z t

t0
ðt�τÞα�1f ðτÞ dτ;

where α40, and Γð�Þ is the Gamma function which is defined by

ΓðzÞ ¼
Z 1

0
e� t tz�1 dt; ReðzÞ40ð Þ:

where Re(z) is the real part of z.

Definition 2 (Kilbas et al. [34]). The Caputo fractional-order
derivative of order α for a function f ðtÞACnþ1 ½t0; þ1Þ;Rð Þ is
defined as

Dαf ðtÞ ¼ 1
Γðn�αÞ

Z t

t0

f ðnÞðτÞ
ðt�τÞα�nþ1 dτ;

where tZt0 and n is a positive integer such that n�1oαon.
Particularly, when 0oαo1,

Dαf ðtÞ ¼ 1
Γð1�αÞ

Z t

t0

f 0ðτÞ
ðt�τÞα dτ:

The Laplace transform of the Caputo fractional-order derivative is

LfDαf ðtÞ; sg ¼ sαFðsÞ�
Xn�1

k ¼ 0

sα�k�1f ðkÞðt0Þ;

where n�1oαrn, F(s) is the Laplace transform of f(t) with
FðsÞ ¼Lff ðtÞg, and s is the variable in Laplace domain.

In addition, the following properties about Caputo fractional-
order derivative and a necessary Lemma are given.

Property 1. Dαc¼ 0 holds, where c is any constant.

Property 2. For any constants ν1 and ν2, the linearity of Caputo
fractional-order derivative is described by

Dα ν1f ðtÞþν2gðtÞð Þ ¼ ν1Dαf ðtÞþν2DαgðtÞ:
Lemma 1 (Kilbas et al. [34]). LetΩ¼ ½a; b� be an interval on the real
axis R, let n¼ ½α�þ1 for α=2Nþ or n¼ α for αANþ . If xðtÞACn½a; b�,
then

IαDαxðtÞ ¼ xðtÞ�
Xn�1

k ¼ 0

xðkÞðaÞ
k!

ðt�aÞk; n�1oαrn;

where Iα is the fractional-order integral of order α and Dα is the
Caputo fractional-order derivative of order α. In particular, if 0oα
r1 and xðtÞAC1½a; b�, then
IαDαxðtÞ ¼ xðtÞ�xðaÞ:

2.2. System description

We consider a class of FNNs with time delays and dis-
continuous activations described by the following equation:

DαxiðtÞ ¼ �dixiðtÞþ
Xn
j ¼ 1

aijf j xjðtÞ
� �þXn

j ¼ 1

bijgj xjðt�hÞ� �þ IiðtÞ; ð1Þ

where i¼ 1;2;…;nðnANþ Þ, tZ0, Dα denotes the Caputo fractional
derivative of order α and 0oαo1; xðtÞ ¼ x1ðtÞ;…; xnðtÞð ÞT ARn is the
vector of neuron states; di40 is a constant; aij and bij are constants
which represent the neuron interconnection weight and the delayed
neuron interconnection weight, respectively; and Ii(t) is a continuous
bounded external input function. xiðsÞ ¼φiðsÞAC ½�h;0�;Rð Þ is the
initial condition of system (1) where C ½�h;0�;Rð Þ is Banach space of
all continuous functions and time delay h40. Moreover, f ðxÞ ¼
f 1ðx1Þ; f 2ðx2Þ;…; f nðxnÞ
� �T and gðxÞ ¼ g1ðx1Þ; g2ðx2Þ;…; gnðxnÞ

� �T are
vector-valued activation functions from Rn to Rn.

The following assumption about activation functions fj and gj
for j¼ 1;2;…;n is given for system (1).

ðH1Þ The activation functions f jAF (and gjAG) for any
j¼ 1;2;…;n, where F (and G) denotes the class of functions from
R to R which are continuous and have at most a finite number of
jump discontinuities ρk (and ϱk) in every bounded interval. In
addition, there exist finite right and left limits, f jðρþ

k Þ (and gjðϱþ
k Þ)

and f jðρ�
k Þ (and gjðϱ�

k Þ) respectively.

Remark 1. In the previous results of FNNs [33,35–38], the non-
linear activation functions f and g satisfy the common Lipschitz
conditions, but in this paper these conditions are removed. In
addition, compared with the results of integer-order neural net-
works with discontinuous activations, the boundedness [39,40]
and the monotonicity [39–42] of the activation functions are not
required. So our assumption are more general.

Due to the presence of discontinuous activations fj and gj
ðj¼ 1;2;…;nÞ, system (1) is discontinuous and its classical solution
does not exist. Here, we consider the solutions of system under the
framework of Filippov. Now, the concept of Filippov solution [43]
is given.

Definition 3 (Filippov [43]). For a system with discontinuous
right-hand sides:

dx
dt

¼ f ðt; xtÞ; tZ0; ð2Þ
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