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a b s t r a c t

In this paper, the global stability problem of Takagi–Sugeno (T–S) stochastic fuzzy Hopfield neural

networks (TSSFHNNs) with discrete and distributed time varying delays is considered. A novel LMI-

based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic

stability of TSSFHNNs with discrete and distributed time varying delays. Here we choose a generalized

Lyapunov functional and introduce a parameterized model transformation with free weighting

matrices to it, in order to obtain stability region. In fact, these techniques lead to generalized and

less conservative stability condition that guarantee the wide stability region. The proposed stability

conditions are demonstrated with numerical examples. Comparison with other stability conditions in

the literature shows that our conditions are the more powerful ones to guarantee the widest stability

region.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the well-known Hopfield neural network has
been extensively studied and successfully applied in many areas
such as combinatorial optimization, signal processing and pattern
recognition, see for example [7,8]. Recently, it has been realized
that significant time delays as a source of instability and bad
performance may occur in neural processing and signal transmis-
sion. Thus, the stability problem of Hopfield neural networks has
became interesting and many sufficient conditions have been
proposed to guarantee the asymptotic or exponential stability for
the neural networks with various type of time delays, see for
details [3,4,9,11,14,16,33–35,37].

Although discrete time delays in the delayed feedback neural
networks having a small number of cells serve usually as good
approximation of the prime models, a real system is usually
affected by external perturbations. Therefore, it is significant and
of prime importance to consider stochastic effects to the stability
property of the neural networks with delays (see [23,32,38]).

Since neural networks usually have a spatial extend due to the
presence of a multitude of parallel pathways with a variety of
axon sizes and length, and hence there is a distribution of

propagation delays over a period of time. It is worth noting that,
although the signal propagation is sometimes instantaneous and
can be modeled with discrete delays, it may also be distributed
during a certain time period so that the distributed delays should
be incorporated in the model. In other words, it is often the case
that the neural network model possesses both discrete and
distributed delays [20]. In recent years, it is noted that stability
of Hopfield neural networks, cellular neural networks and bidir-
ectional associative memory neural networks with distributed
delays has been discussed in [15,17,19,20,24,25].

Fuzzy systems in the form of the Takagi–Sugeno (T–S) model
[29] have attracted rapidly growing interest in recent years [2,30].
T–S fuzzy systems are nonlinear systems described by a set of IF–
THEN rules. It has shown that the T–S model can give an effective
way to represent complex nonlinear systems by some simple
local linear dynamic systems with their linguistic description.
Some nonlinear dynamic systems can be approximated by the
overall fuzzy linear T–S models for the purpose of stability
analysis [2,30]. Originally, Tanaka and his colleagues have pro-
vided a sufficient condition for the quadratic stability of the T–S
fuzzy systems in the sense of Lyapunov in [31] by considering a
Lyapunov function of the sub-fuzzy systems of the T–S fuzzy
systems. The concept of incorporating fuzzy logic into a neural
network is proposed in some papers [10,21,26–28,36].

Based on the above discussions, we shall generalize the
ordinary T–S fuzzy models to express a class of stochastic
Hopfield neural network with discrete and distributed time
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varying delays. The main purpose of this paper is to study the
global stability results of TSSFHNNs with discrete and distributed
time varying delays in terms of LMIs. The main advantage of the
LMI based approach is that the LMI stability conditions can be
solved numerically using MATLAB LMI toolbox [5] which imple-
ments the state of art interior-point algorithms [1]. We also
provide numerical examples to demonstrate the effectiveness of
the proposed stability results.

Notations: Throughout this paper, Rn and Rn�m denote,
respectively, the n dimensional Euclidean space and the set of
all n�m real matrices. The superscript ‘‘T’’ denotes the transpose
and the notation XZY(respectively, X4Y) where X and Y are
symmetric matrices, means that X–Y is positive semi -definite

(respectively positive definite). lminðAÞ means the smallest eigen
value of the matrix A. Moreover let ðO,F ,fF gtZ0,PÞ be a complete
probability space with a filtration fF gtZ0 satisfying the usual
conditions (i.e the filtration contains all P-null sets and is right
continuous). Cð½�r,0�;RnÞ denotes the family of continuous func-

tions f form ½�r,0� to Rn with norm JfJ¼ sup�rryr0jfðyÞj,
where j � j is the Euclidean norm in Rn. Denote by Lp

F0
ð½�r,0�;RnÞ

the family of all F 0 measurable Cð½�h,0�;RnÞ-valued random

variables x¼ fxðyÞ : �rryr0g such that sup�rryr0EjxðyÞjpo1
where Ef�g stands for the mathematical expectation operator with
respect to the given probability measure P.

2. System description and preliminaries

Consider the following Hopfield neural networks with both
discrete and distributed delays described by,

_uðtÞ ¼ �DðuðtÞÞþAgðuðtÞÞþBgðuðt�hðtÞÞÞþC

Z t

t�tðtÞ
gðuðsÞÞ dsþ I, ð1Þ

where uðtÞ ¼ ½u1ðtÞ,u2ðtÞ, . . . ,unðtÞ�
T is the neural state vector, the

matrix D¼ diagfd1,d2, . . . ,dng is a diagonal matrix and di40,
i¼ 1, . . . ,n: AARn�n,BARn�n and CARn�n are the discretely
delayed connection weight matrices and the distributively
delayed connection weight matrix respectively. gðuðtÞÞ ¼

½g1ðu1ðtÞÞ,g2ðu2ðtÞÞ, . . . ,gnðunðtÞÞ�
T ARn denotes the neuron activa-

tion function with gð0Þ ¼ 0: hðtÞ40 denote the discrete time
varying delay. The term

R t
t�tðtÞ gðuðsÞÞ ds denotes the distributively

delayed connection. tðtÞ40 denote the distributed time varying
delay. hðtÞ40 and tðtÞ40 are assumed to satisfy 0rhðtÞr
h,0rtðtÞrt, _tðtÞrt�o1 and _hðtÞrh�o1 where h,t,t� and h�

are known constants. I¼ ðI1,I2, . . . ,InÞARn is a constant external
input vector.

It is well known that bounded activation functions always
guarantee the existence of an equilibrium point for Hopfield
neural network (1). For convenience, we shift the equilibrium
point u� ¼ ðu�1,u�2, . . . ,u�nÞ

T to the origin by translation xðtÞ ¼

uðtÞ�u�, which yields the following system:

_xðtÞ ¼�DxðtÞþAf ðxðtÞÞþBf ðxðt�hðtÞÞÞþC

Z t

t�tðtÞ
f ðxðsÞÞ ds,

where xðtÞ ¼ ½x1ðtÞ,x2ðtÞ, . . . ,xnðtÞ�
T ARn is the state vector of the

transformed system and f ðxð�ÞÞ ¼ ðf1ðxð�ÞÞ, . . . ,fnðxð�ÞÞÞ
T ,f ðxð�ÞÞ ¼

gðxð�Þþu�Þ�gðu�Þ:

Based on the discussions in the previous section in this paper, we
generalize the ordinary T–S fuzzy models to express a complex
system whose consequent parts are a set of stochastic Hopfield
neural networks with discrete and distributed time varying delays.
The model of Takagi–Sugeno fuzzy Hopfield neural networks with
discrete and distributed time varying delays is described as follows.

Plant Rule k:
IF fy1ðtÞ isMk1g and yand fyrðtÞ isMkrg

THEN

dxðtÞ ¼ �DkxðtÞþAkf ðxðtÞÞþBkf ðxðt�hðtÞÞÞþCk

Z t

t�tðtÞ
f ðxðsÞÞ ds

� �
dt

þskðt,xðtÞ,xðt�hðtÞÞ,xðt�tðtÞÞÞdwðtÞ,

where yiðtÞ and ði¼ 1,2; :::;rÞ are known variables. MklðkA
f1,2, . . . ,mg,lAf1,2, . . . ,rgÞ is the fuzzy set and m is the number
of model rules. The initial condition associated with this model is
x0 ¼ xAL2

F0
ð½�r,0�;RnÞ,r¼maxfh,tg: Also oðtÞ is a Wiener process

(Brownian motion) on ðO,F ,fF gtZ0,PÞ which satisfies EfoðtÞg ¼
0,EfoðtÞg2 ¼ t:

By inferring from the fuzzy models, the final output of
TSSFHNNs is obtained by

dxðtÞ ¼
Xm

k ¼ 1

ZkðyðtÞÞ ½�DkxðtÞþAkf ðxðtÞÞþBkf ðxðt�hðtÞÞÞ
�

þCk

Z t

t�tðtÞ
f ðxðsÞÞ ds� dtþskðt,xðtÞ,xðt�hðtÞÞ,xðt�tðtÞÞÞdwðtÞ

�
:

ð2Þ

The weight and averaged weight of each fuzzy rule are denoted by

okðyðtÞÞ ¼
Yt

l ¼ 1

MklðyðtÞÞ and ZkðyðtÞÞ ¼
okðyðtÞÞPm

k ¼ 1 okðyðtÞÞ
,

respectively. The term MklðyðtÞÞ is the grade membership of ylðtÞ in
Mkl:

We assume that

okðyðtÞÞZ0, and
Xm
k ¼ 1

ZkðyðtÞÞ ¼ 1, for all tZ0:

Throughout this paper, we make the following assumption:

(A1) There exist positive numbers lj such that

0r
fjðxÞ�fjðyÞ

xj�yj
r lj, j¼ 1,2, . . . ,n:

for all xj,yjAR,xjayj and denote L¼ diagfl1,l2, . . . ,lng:
(A2) There exist matrices P1Z0,P2Z0,P3Z0 such that

trace½sT
k ðt,xðtÞ,xðt�hðtÞÞ,xðt�tðtÞÞÞPskðt,xðtÞ,xðt�hðtÞÞ,xðt�tðtÞÞ�

rxT ðtÞP1xðtÞþxT ðt�hðtÞÞP2xðt�hðtÞÞþxT ðt�tðtÞÞP3xðt�tðtÞÞÞ:

Remark 2.1. Under the assumptions (A1) and (A2), it is easy to
check that functions f and s satisfy the linear growth condition
[12]. Therefore, for any initial data xAL2

F ð½�r,0�;RnÞ the system
(2) has unique solution (or equilibrium point) denoted by xðt; xÞ
or xðtÞ.

Defining the following state variables for the TSSFHNNs,

yðtÞ ¼
Xm

k ¼ 1

ZkðyðtÞÞ½�DkxðtÞþAkf ðxðtÞÞþBkf ðxðt�hðtÞÞÞ

þCk

Z t

t�tðtÞ
f ðxðsÞÞ ds�, ð3Þ

gðtÞ ¼
Xm

k ¼ 1

ZkðyðtÞÞ½skðt,xðtÞ,xðt�hðtÞÞ,xðt�tðtÞÞÞ�: ð4Þ

By using (3) and (4) the TSSFHNNs can be represented as

dxðtÞ ¼ yðtÞ dtþgðtÞ doðtÞ:

Now we give the following definition of exponential stability
for neural networks (2).
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