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In this paper, we study the effect of time delay on the spiking activity in Newman–Watts small-world

networks of Hodgkin–Huxley neurons with non-Gaussian noise, and investigate how the non-Gaussian

noise affects the delay-induced behaviors. It was found that, as the delay increases, the neuron spiking

intermittently performs the most ordered and synchronized behavior when the delay lengths are

integer multiples of the spiking periods, which shows multiple temporal resonances and spatial

synchronizations, and reveals that the locking between the delay lengths and the spiking periods might

be the mechanism behind the behaviors. It was also found that the delay-optimized spiking behaviors

could be enhanced when non-Gaussian noise’s deviation from the Gaussian noise is appropriate. These

results show that time delay and non-Gaussian noise would cooperate to play more constructive and

efficient roles in the information processing of neural networks.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, the constructive role of noise has been
extensively studied in various nonlinear dynamics, the most
prominent of which is stochastic resonance (SR) and coherence
resonance (CR) [1–7]. SR is characterized by the optimization of
the output signal-to-noise ratio in a nonlinear dynamical system
following the addition of a weak external signal, and CR refers to
the resonant response of a dynamical system to pure noise.
Among these studies, many have been dedicated to the SR and
CR in various neuronal systems [2–7]. It is well known that a
single neuron in the vertebrate cortex connects to more than
10 000 postsynaptic neurons via synapses forming complex net-
works [8]. Therefore, it is necessary to employ neural networks to
account for the dynamics of neural systems, and randomly adding
a number of long-range shortcuts among neurons representing
random connections is reasonable and feasible due to the pre-
sence of random information transmission among the neu-
rons [9–11]. In recent decade, many SR and CR phenomena have
been found in complex neuronal networks, such as array-
enhanced CR in coupled FitzHugh–Nagumo neurons [12,13], CR
in Watts–Strogatz networks of Hodgkin–Huxley (HH) neu-
rons [14,15], SR in small-world networks of overdamped bistable
oscillators [16], Watts–Strogatz networks of Rulkov map [17],

Newman–Watts networks of HH neurons [18], and two-dimen-
sional spatially extended neuronal networks [19–21]. In all these
works, noise is always assumed to be of Gaussian behavior.
However, non-Gaussian noise has been experimentally found in
sensory systems like neurons of crayfish [22] and rat skin [23], as
well as in calcium oscillations in hepatocytes [24]. In the last
decades, two types of non-Gaussian noises, i.e., Lévy noise and a
particular kind of non-Gaussian colored noise (NGN), have
attracted much attention. It has been shown that Lévy stochastic
processes are very common in economic and social sys-
tems [25,26] and the NGN widely exists in nonlinear dynamical
systems [27–36]. The non-Gaussian character of the NGN is
characterized simply by a parameter q that measures the NGN’s
deviation from the Gaussian noise (q¼1) and determines the
NGN’s probability distribution function. Thus, such a particular
form allows one to easily control the deviation from the Gaussian
behavior by changing a single parameter q. Very recently, we have
found the NGN-induced CR in a single HH neuron and an array of
coupled HH neurons [37,38].

Firing synchronization in neuronal networks is another
important dynamical phenomena, since the synchronization of
coupled neurons may elucidate how the coherent spontaneously
synchronized oscillations, which have been observed in the brain
cortex, are established in many neural systems [39–41]. In the
past years, people have found many synchronization phenomena,
such as noise-induced synchronization in modified HH (MHH)
neurons [42], a ring neuronal network [43], two coupled map-
based neurons [44], a square lattice noisy neuronal network [45],
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and scale-free networks of Morris–Lecar neurons [46]; burst-
enhanced synchronization in an array of noisy coupled MHH
neurons [47], and synchronization in a large ensemble of MHH
neurons with gap junctions [48] and in small-world neuronal
networks [49–53].

In neuronal systems, time delay is inherent because of both
the finite speed at which action potentials propagate across
neuron axons and time lapses occurring in both dendritic and
synaptic processing [54]. The effects of time delay on the firing
dynamics of neuronal systems have attracted much attention in
recent years. It has been shown that time delay can facilitate and
improve neuronal synchronization [55–57], induce various spa-
tio-temporal patterns [58], enhance the coherence of spiral waves
in noisy HH neuronal networks [59]. Very recently, Wang et al.
have found interesting phenomena of delay-induced synchroni-
zation transitions in small-world and scale-free neuronal net-
works [60,61], as well as multiple stochastic resonances in scale-
free neuronal networks [62].

The goal of this paper is to study the effect of time delay and
non-Gaussian noise in the spiking activity of neuronal networks.
Using Newman–Watts networks of electrically coupled HH neu-
rons with NGN, we study how the spiking behavior changes with
varying time delay and how the NGN affects the delay-induced
behaviors. It is found that the neurons intermittently exhibit the
most ordered and synchronized spiking behaviors when the delay
lengths are integer multiples of the spiking periods. When the
NGN is appropriate, the delay-optimized spiking behaviors can be
enhanced.

2. Model and equations

According to the HH neuron model, the dynamics of the
membrane potential V(t) can be described by

C
dV

dt
¼�gNam3hðV�VNaÞ�gKn4ðV�VKÞ�gLðV�VLÞþ IðtÞþZðtÞ, ð1aÞ

where the constants gNa¼120 mS/cm2, gK¼36 mS/cm2, and
gL¼0.3 mS/cm2 are the maximal conductance of sodium, potas-
sium, and leakage conductance, respectively. C¼1 mF/cm2 is the
membrane capacitance; VNa¼50 mV, VK¼�77 mV, and VL¼

�54.4 mV are the reversal potentials of sodium, potassium, and
leakage currents, respectively. m3h and n4 are the mean portions
of the open potassium and sodium ion channels within the
membrane patch, respectively. We employ a sub-threshold per-
iodic stimulus I¼ 6:0þsinð0:3tÞ [63,64]. The stochastic gating
variables m, h, and n obey the following Langevin equations:

_m ¼ amðVÞð1�mÞ�bmðVÞm, ð1bÞ

_h ¼ ahðVÞð1�hÞ�bhðVÞh, ð1cÞ

_n ¼ anðVÞð1�nÞ�bnðVÞn, ð1dÞ

with voltage-dependent opening–closing transition rates given by

amðVÞ ¼
0:1ðVþ10Þ

1�exp½�ðVþ40Þ=10�
, ð2aÞ

bmðVÞ ¼ 4exp½�ðVþ65Þ=18�, ð2bÞ

ahðVÞ ¼ 0:07exp½�ðVþ65Þ=20�, ð2cÞ

bhðVÞ ¼
1

1þexp½�ðVþ35Þ=10�
, ð2dÞ

anðVÞ ¼
0:01ðVþ55Þ

1�exp½�ðVþ55Þ=10�
, ð2eÞ

bnðVÞ ¼ 0:125exp½�ðVþ65Þ=80�: ð2fÞ

The noise term Z(t) is assumed to have a non-Gaussian
distribution [35] with

dZðtÞ
dt
¼�

1

r

d

dZVqðZÞþ
ffiffiffiffiffiffiffi
2D
p

r
xðtÞ, ð3aÞ

where

VqðZÞ ¼
D

rðq�1Þ
ln 1þ

r

D
ðq�1Þ

Z2

2

� �
, ð3bÞ

and x(t) is a Gaussian white noise with vanishing mean and
autocorrelation function xðtÞxðt0Þ

� �
¼ dðt�t0Þ, D and r are para-

meters related to the noise intensity and the correlation time,
respectively, q stands for the deviation from Gaussian behavior
(q¼1). Note that the change of deviation depends on the value
of q. For q41, the deviation increases as q increases, but for qo1,
the deviation increases as q decreases.

Theoretical analysis [35] shows that the stationary probability
distribution has the form

Pst
q ðZÞ ¼

1

Zq
1þ

r

D
ðq�1Þ

Z2

2

� ��1=ðq�1Þ

, ð4Þ

where Zq is a normalization constant. This distribution can be
normalized only for qo3. The first moment is always equal to
zero, and the second moment is given by /Z2

qS¼ 2D=rð5�3qÞ,
which is finite only for qo5/3. For q41, the distribution has a
long tail, while for qo1, the distribution has a cut-off and is only
defined for 9Z9o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=rð1�qÞ

p
. Clearly, when q-1, the limit of Z(t)

is Gaussian colored noise. The effective noise intensity Dq¼

[2(2�q)/(5�3q)]2D and the effective correlation time rq¼2(2�q)r/
(5�3q) diverge near q¼5/3. Thus, our calculations will be restrained
by qo5/3.

The spiking dynamics of the coupled HH neuron networks can
be written as

C
dVi

dt
¼�gNam3

i hiðVi�VNaÞ�gKn4
i ðVi�VKÞ�gLðVi�VLÞ

þ IðtÞþZiðtÞþ
X

j

eijðVjðt�tÞ�ViÞ, ð5aÞ

dxi

dt
¼ axi
ðViÞð1�xiÞ�bxi

ðViÞxi, ð5bÞ

where x¼m, h, n, t is the time delay (in unit of ms). In the
coupling term

P
jeij½Vjðt�tÞ�Vi�, Vi is the membrane potential of

the ith neuron at time t, Vj(t�t) is the membrane potential of jth
neuron at earlier time t�t, 1r(i,j)rN, N is the number of
neurons, and the summation takes over all neurons; eij is a
coupling constant between the two neurons i and j, which is
determined by the coupling pattern of the system and is identical
for any two neurons, i.e., eij¼e. e¼0.1 if neurons i and j are
connected; e¼0 otherwise.

The neuronal network [47,48] used here starts with a regular
ring comprising N¼60 identical HH neurons, each neuron con-
necting with two nearest neighbors. Links are randomly added
between non-nearest vertices. In the limit case that all neurons
coupled to each other, the network contains N(N�1)/2 edges.
Using M to denote the number of added shortcuts, the fraction of
the shortcuts is given by p¼M/[N(N�1)/2], which is used to
characterize the randomness of the network topology.

Coefficient of variation (CV) l and standard deviation s are
used to quantitatively characterize the spiking temporal coher-
ence and spatial synchronization, respectively. The CV for the
spikes of a single neuron on the network is defined as

li ¼/TS=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/T2S�/TS2

q
, ð6Þ
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