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a b s t r a c t

Multiple kernel learning method has more advantages over the single one on the model’s interpretability
and generalization performance. The existing multiple kernel learning methods usually solve SVM in the
dual which is equivalent to the primal optimization. Research shows solving in the primal achieves faster
convergence rate than solving in the dual. This paper provides a novel LP-norm(P41) constraint non-
spare multiple kernel learning method which optimizes the objective function in the primal. Subgradient
and Quasi-Newton approach are used to solve standard SVM which possesses superlinear convergence
property and acquires inverse Hessian without computing a second derivative, leading to a preferable
convergence speed. Alternating optimization method is used to solve SVM and to learn the base kernel
weights. Experiments show that the proposed algorithm converges rapidly and that its efficiency com-
pares favorably to other multiple kernel learning algorithms.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Kernel method is an effective way to solve non-linear pattern
recognition problems. For any kernel method, the data examples
are first mapped to high dimensional Hilbert space H through a
map ϕ : X-H, and then a liner decision boundary is found in that
space. The map ϕ is computed implicitly through a kernel function
kðxi; xjÞ, which is used to measure the similarity between data
examples xi and xj. In the past several decades kernel methods
have been widely used to solve machine learning problems such as
classification [1,2], regression [3,4], density estimation [5] and
subspace analysis [6]. For these tasks, the performance of the
algorithm strongly depends on the data representation, which is
implicitly chosen through the kernel function kð:; :Þ. Many kernel
methods usually adopt a single predefined kernel function. How-
ever, in many real-world applications, it is usually not enough to
use a single predefined kernel function because real data may
come from multiple diverse sources or could be given in terms of
different kinds of representations [7–13]. Multiple kernels based
method has been extensively studied in the past few years [14–
23]. A lot of applications have shown that using multiple kernels
instead of a single one can effectively improve the interpretability
and performances of the decision function and successfully resolve
the challenges of speech recognition [24], anomaly detection [25]
and protein–protein interaction extraction [26]. In such cases, we

often consider that the kernel kð:; :Þ is actually a convex combina-
tion of basis kernels

kðxi; xjÞ ¼
XM

m ¼ 1
θmkmðxi; xjÞ; s:t:

XM

m ¼ 1
θm ¼ 1;θmZ0

where M is the total number of basic kernels. θm is the combina-
tion weight corresponding to kernel kmð:; :Þ. In such multiple kernel
learning framework, data representation in the feature space is
transformed into the selection of the basic kernels and weights.

Promoting training speed and predictive accuracy is the most
active research directions in multiple kernel learning (MKL). Many
effective methods have been investigated in recent years. The MKL
problem has been introduced by Lanckriet et al. [14], which is
exactly a constrained quadratic programming (QCQP) problem and
becomes rapidly intractable as the number of data examples or
basic kernels become large. Actually, the kernel learning problem
is nonsmooth, which makes the direct application of gradient
descent methods infeasible. Bach et al. [15] have considered a
smoothed version of the problem so that gradient method such as
SMO can be applied. Sonnenburg et al. [16] reformulate the MKL
problem [15] as a semi-infinite linear program (SILP) and address
that the problem can be solved by iteratively using existing single
kernel classical SVM. Note that SILP may suffer from the instability
of the solution of MKL. However, the approaches above employ
mixed-norm regularization which results in slow convergence.
Rakotomamonjy et al. [17] propose an algorithm, named Sim-
pleMKL, reformulating the mixed-norm regularization in the MKL
problem above as the weighted 2-norm regularization, which
makes MKL more practical for large-scale learning. Then some
improved methods have been proposed to solve this problem,
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such as level-based optimization [18] and second-order Newton
method [19].

In order to avoid overfitting, some regularization techniques
are imposed on the weights. L1 norm MKL [17], for example,
promotes the sparse solutions in terms of the kernel weights and
thus it has preferable interpretability in kernel selection. Never-
theless, sparseness is not always beneficial in practice and sparse
MKL is frequently observed to be outperformed by a regular SVM
with an unweighted-sum kernel [20,21]. Recently, Kloft et al.
[20,21] propose LP-norm MKL method to extend the regular L1-
norm MKL for arbitrary LP-norm MKL with P41. Compared with
L1-norm MKL, LP-norm can significantly improve the performance
on diverse and relevant real-world datasets.

The existing methods mainly reformulate the MKL problem as
a saddle point optimization problem which concentrates on sol-
ving in the dual. Primal optimization and the dual optimization
are two equivalent ways to the same aim. Recent research shows
solving in the primal achieves better convergence properties than
solving in the dual [27–29]. Firstly, we can efficiently solve the
primal problem without the need of the computations related to
the variable switching. Secondly, when it comes to approximate
solution, primal optimization is superior because it is more
focused on minimizing what we are interested in, namely the
primal objective.

In this paper we will show how to solve LP-norm MKL in the
primal with improved Quasi-Newton method [30]. Since Quasi-
Newton method possesses superlinear convergence property and
acquires inverse Hessian without computing a second derivative,
the proposed algorithm obtains a faster convergence. Similar to
other MKL methods, the alternating optimization algorithm is
adopted to optimize classical SVM and the kernel weights
respectively. Finally, we conduct a series of experiments to verify
the efficiency and classification performance of our method.

The paper is organized as follows. Introduction of MKL problem
is provided in Section 2. Section 3 describes the proposed MKL
method in detail. Experiments are presented in Section 4 and
some concluding remarks are given in the last section.

2. Multiple kernel learning problem

Support vector machine (SVM) is one of the most successful
applications in kernel-based methods. Considering binary classi-
fication problem, the training data D¼ fðxi; yiÞj i¼ 1:::n; xiARdg
where yi ¼ 71 is the label of xi. The data examples are first
mapped to high dimensional Hilbert space H through a map ϕ,
and then a linear decision boundary φðxÞ is found in that space,
maximizing the margin between the two classes. Generally, the
decision boundary is constructed by minimizing the following
generic objective function:

Q ðf ; bÞ ¼ λ
2
jj f jj 2HþC

Xn

i ¼ 1
ℓðyi; f ðxiÞþbÞ ð1Þ

where λ(λZ0) is a tuning parameter which is used to balance the
effect of the two items on the right. The second one is the
empirical risk of hypothesis f , and ℓ is a hinge loss function which
is commonly used for binary classification with the following
form:

ℓðyi; f ðxiÞÞ ¼ maxð0;1� yi f ðxiÞÞ ð2Þ
The decision boundary is defined as

φðxÞ ¼ f ðxÞþb ð3Þ
To simplify computation, real scalar b is omitted as it is only

related to the position of boundary. Finally we can determine the

class of the example, in which xi belongs to þ1 class if f ðxiÞ40,
otherwise it belongs to �1 class.

Considering a given feature map ϕ : X-H, where H corre-
sponds to kernel function k such that kðxi; xjÞ ¼ϕðxiÞTϕðxjÞ. K is a
kernel matrix, K ðijÞ ¼ kðxi; xjÞ, and K ðiÞ is the ith column of K . Based
on the representation theorem [31], the decision boundary is as
follows:

f ðxÞ ¼
Xn

i ¼ 1
αikðxi; xÞ ð4Þ

Here we denote the αi’s as expansion coefficients instead of
Lagrange multipliers αi in standard SVM. Then we can transform
the objective function (1) into the following form:

Q ðαÞ ¼ λ
2
αTKαþC

Xn

i ¼ 1
maxð0;1�yiK

T
i αÞ ð5Þ

Considering ϕm : X-Hm, m¼ 1:::M are M different feature
maps corresponding to kernel function km. The aim of MKL is to
learn the linear convex combination of basic kernels

kðxi;xjÞ ¼
XM

m ¼ 1
θmkmðxi; xjÞ ð6Þ

The boundary f ðxÞ is defined as

f ðxÞ ¼
XM

m ¼ 1
f mðxÞ ð7Þ

According to Eqs. (5) and (6), the final optimization objection
function can be formulated as

Q ðα;θÞ ¼ λ
2
αT

XM

m ¼ 1
θmKm

� �
α

þC
Xn

i ¼ 1
max 0;1�yi

XM

m ¼ 1
θmKmðiÞ

� �
α

� �
ð8Þ

s:t:
XM

m ¼ 1
ðθP

mÞ
n o1=P

r1;θmZ0; P41

Here arbitrary LP-norm constraint (P41) is imposed on weights θ
to achieve non-spare solutions.

3. Optimizing the MKL problem in primal

One general approach for solving problem Q ðα;θÞ is to use
alternating optimization algorithm applied in [17–21]. In the first
step, Q ðα;θÞ is optimized with respect to αwith θ being fixed. Then
in the second step, the weights are updated to decrease the
objective function Q ðα;θÞ with α being fixed. The two steps are
alternated until a predefined criterion is satisfied.

Fixed θ, Eq. (8) is exactly a nonsmooth function with respect to
α. We adopt an improved quasi-Newton method, named subLBFGS
[30] to solve this nonsmooth optimization problem. We first pre-
sent some details of this optimization technique.

Quasi-Newton method is an effective method for solving non-
linear optimization problem with superlinear convergence prop-
erty. An approximation is engaged to the inverse Hessian, which is
built up on the basis of information gathered during the descent
process, in place of true inverse required in Newton’s method.
There are several kinds of quasi-Newton methods according to
different approximations to Hessian matrix, such as BFGS and
LBGFS.

Definition 1. (Subgradient): Considering a convex function Q :
ℜd↦ℜ, Vector gAℜd is a subgradient of Q at point w if and only if
8w'Aℜd, there is Q ðw'ÞZQ ðwÞþðw'�wÞTg.

Definition 2. (Subdifferential): The set of all subgradients of the con-
vex function Q at point w is subdifferential, and is denoted by ∂Q ðwÞ.

Based on the above definitions we can conclude that function Q
is subdifferentiable at point w if the set of subgradients is not
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