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Point set registration plays a crucial role in numerous computer vision applications. This paper proposes
a novel and general approach called three-point convex hull matching (3PCHM) for registering two point
sets with similarity transform. First, convex hulls are extracted from both point sets. Triangular patches
on the surface of convex hulls are specified by predefining their normal vectors, thus guaranteeing that
all points are located on the same side of any randomly selected triangle plane. Second, the potential
similar triangle pair set is obtained by comparing the length ratio of the edges on the two extracted
convex hulls. Thereafter, the transformation parameters for each pairwise triangle are calculated by
minimizing the Euclidean distance between the corresponding vertex pairs. Furthermore, a k-
dimensional (k-d) tree is used to accelerate the closest point search for the whole point sets. Third,
outliers that may lead to significant errors are discarded by integrating the random sample consensus
algorithm for global optimization. Experiments show that the proposed 3PCHM is robust even with the
existence of noise and outliers and is effective in cases of part-to-part registration and part-to-whole

registration.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The development of computer graphics, computer vision, vir-
tual reality, and augmented reality in recent years has increased
the research attention on 3D model generation and manipulation
techniques. In all relative techniques, registration and alignment
are the most important aspects for the quantitative analysis of 3D
models. A 3D model can be represented as a mesh or cloud point,
and the registration technique aims to find the best matching
geometric warping among models at different representations.
This technology has significant applications in the fields of pho-
togrammetry, motion tracking, camera pose recovering, and object
identification.

In the past two decades, numerous methods have been devel-
oped for the registration of point sets and 3D models. The most
famous method is the iterative closest point (ICP), which was
proposed by Besl and Mckay [1] in 1992. In ICP, the transformation
between two different point sets is optimized by minimizing
Euclidian distance between every corresponding point pair of two
sets. Considering the simplicity and effectiveness of ICP for point
sets with relatively small variations, ICP has been widely used in
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different fields and referenced by numerous studies. However, the
ICP algorithm is highly dependent on the initial geometry of
registering point sets and can be easily trapped into a local
minimum.

Numerous ICP variants have greatly increased our under-
standing of matching problems. The ICP algorithm generally
assumes that the points to be registered have homogeneous
Gaussian noise. On the basis of this hypothesis, Granger et al. [2,3]
extended the ICP algorithm by using expectation-maximization
(EM) principles to estimate the Gaussian weights of the matches,
thus resulting in the EM-ICP algorithm. They also proposed a
coarse-to-fine annealing scheme to avoid local minimum. By
decimating the point sets, the computation time explosion at
coarse levels can be reduced. EM-ICP provides better repeatability,
superior accuracy, and higher computation efficiency than the
original ICP. Instead of calculating the one-to-one corresponding
relationship between each point by using the nearest neighbor
criterion, Myronenko [4,5] and Jian et al. [6] assumed that each
model point corresponds to a weighted sum of the scene points;
thus, the point sets can be represented as Gaussian mixture
models (GMMs). Point set registration can also be used to align
two Gaussian mixtures by minimizing their discrepancies. Rather
than providing additional prior affinity measures [7] for ICP algo-
rithms, GMM-based algorithms [8] statistically estimate the
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discrepancy between point sets and significantly improve the
computational accuracy and robustness of point set registration.

ICP variants generally employ the Euclidean distance as the
distance metric. The Euclidean distance theoretically guarantees
that corresponding matches can be found by tentative iterations.
However, some of these algorithms are rendered ineffective by
noise, occlusion, and partial point scarcity. An effective way to
modify the distance metric with respect to the whole point set is
to find local invariant features [9], such as surface orientation [10],
curvature [11], and normal [12] or congruent shapes [13]. Some
algorithms aim to establish a pairwise relationship and distinguish
a limited number of invariable features from numerous points
with respect to similarity transformation, thus resulting in a sig-
nificant reduction in computation complexity. However, feature
extraction and matching procedures are sensitive to imaging noise
and resolution. Thus, higher levels of geometric descriptors such as
shape contexts [14,15], spin images [ 16], similarity graphs [17], and
log-polar height maps [18] have been proposed for point set
registration. These approaches generally integrate structural or
topological information into the registration scheme, thus allow-
ing the accurate estimation of camera parameters under poor
initialization and the handling of partial or missing structures.
Unfortunately, these techniques are ill suited for point sets with
unknown densities or sparse distributions. Furthermore, localiza-
tion uncertainty for point sets may be highly anisotropic because
of different imaging techniques. Therefore, the commonly
assumed isotropic noise distribution for point sets can be deemed
as an ill-posed theorem, thus leading to the use of SoftICP [19],
SoftAssign [20], or A-ICP [21] for the estimation and refinement of
tentative correspondences by the integration of anisotropic weight
estimation.

Given that iterative optimization is needed to minimize the
sum of squared distances between corresponding points, several
strategies have been designed to improve the effectiveness of
registration procedures (e.g., the Levenberg-Marquardt (LM)
algorithm [22], dynamic programming [23,24], annealing scheme
[25], and multi-resolution strategies [26]). The LM-ICP [22], which
is capable of yielding a large basin of convergence than common
techniques, is proposed by integrating the LM algorithm into the
optimization kernel function. The random sample consensus
(RANSAC) algorithm [27] iteratively estimates the parameters of a
predefined model of observed data by removing outliers; this
method is effective for refining the results of point set registration
[28,29]. The four-point congruent sets (4PCS) approach is pro-
posed by extracting all coplanar four-point set from source point
sets that are approximately congruent to the given set of coplanar
four-point in the target point sets under rigid transformation [13].
By integrating the RANSAC algorithm, the 4PCS is capable of cal-
culating the global transformation by using a set of sampling
coplanar points. On the contrary, recent developments in graphics
hardware and software have motivated people to accelerate
registration procedures by parallelization [30] and graphics pro-
cessing unit (GPU) [31] implementations, which have been widely
acknowledged as effective ways for fast registration.

All of the above-mentioned methods have greatly improved the
technique of point set registration. However, given that the com-
plexity of the registration problem is closely correlated with the
noise distribution, density, and sparsity of two point sets, many
challenges for robust point set registration still exist. We propose a
novel three-point convex hull matching (3PCHM) method on the
basis of previous studies. First, convex hulls are extracted from both
point sets to be registered. The specification of triangle patches is
then conducted by using normal vectors on the convex hulls.
Thereafter, a similar triangle pair set is obtained by comparing the
length ratio of each triangle on the convex hull of the two point sets;
this step also assists the computation of the scaling factor for the

similarity transformation. The optimization of the transformation
parameters including the rotation and translation for each triangle
pair is realized by minimizing the Euclidean distance between the
corresponding vertex pairs. Pairs that may lead to significant errors
are discarded by using the RANSAC algorithm to achieve global
optimization. The main contribution of the proposed algorithm is
twofold: first, considering that the invariant property of the
extracted 3D convex hull is used for point set registration, the pro-
cess is independent of the initial pose and the alignment of point
sets. Second, the registration procedure is robust and efficient with
respect to the initial transformation because of the utilization of
limited number triangle pairs for computation.

2. Method

Suppose we have two finite sized point sets with similarity
transformation to be registered. Let P={p;p, .. Dn,} Tepresent
the source point set and Q ={q; ¢, . dn,) represent the target
point set. Both P and Q are assumed subsets of the vector space R3,
Np and Ny, are the number of P and Q respectively. The registration
approach is addressed to obtain the optimal transformation
between spaces. Fig. 1 shows the basic procedural flow of the
3PCHM algorithm with its key processes. The registration proce-
dure can be divided into the following stages:

a) The first stage is the formation of the convex hull and involves
the extraction of the convex hull of both 3D point sets.

b) The second stage is triangle matching, wherein the length
ratios of each triangle are computed and ordered. Thereafter,
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Fig. 1. Flow chart of the 3PCHM algorithm. (A) Formation of convex hull
(B) Triangle matching and registration. (C) Global optimization.
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