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a b s t r a c t

In a study (Szekely, 1965) [1] of the locomotion of salamanders, it is observed that a ‘doubly periodic

traveling wave solution’ of a logical neural network can be used to explain a dynamic pattern of

movements. We show here that nonlinear and nonlogical artificial neural network can also be built by

means of reaction diffusion principles and existence or nonexistence of doubly periodic traveling waves

can be guaranteed by adjusting parameters built into these networks. Our derivations for existence are

based on implicit function theorems and the invariance properties of our model; while nonexistence is

based on boundedness properties of the polynomial reaction term. We also give illustrative examples as

well as comments on the differences between present results with those obtained for linear models

studied earlier in Cheng and Lin (2009) [2,3].

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Szekely in [1] studied the movement of salamanders and found
that the dynamic locomotive pattern of salamanders can be
simulated by periodic (vector) sequences fvðtÞg1t ¼ 0, where each
v(t) is also a periodic real sequence of the form f. . . ,vðtÞ0 ,vðtÞ1 , . . .g and
these sequences can be generated by a bipolar neural network. In
[2,3], the authors observed that these vector sequences have
several characteristic properties, namely, they satisfy

vðtþtÞi ¼ vðtÞiþd ðtemporal2spatial transition conditionÞ,

vðtÞi ¼ vðtÞiþU ðspatial periodicity conditionÞ,

and

vðtþDÞi ¼ vðtÞi ðtemporal periodicity conditionÞ;

where tAf0,1, . . . ,g, t,D,U are positive integers and d,i are
integers. Such vector sequences are called doubly periodic

ðD,UÞ�traveling waves and can also be used to explain other
dynamic patterns of movements (see e.g. [3]).

A natural question then is whether we can build artificial neural
networks which can yield such traveling waves. To this end, in [2,3],
we apply reaction and diffusion principles to build several dynamic
network models and obtain the exact conditions the required
traveling waves may or may not be generated by them. The

network in [2] has a linear ‘diffusion part’ and a nonlinear ‘reaction
part’. However, the reaction part consists of a quadratic polynomial
so the investigation is reduced to a linear homogeneous problem.
The network in [3] has the same diffusion part, but has a linear
‘reaction part’. It is therefore of great interests to build nonlinear

networks with general polynomials as the reaction terms, and see if
the desired traveling waves exist (for readers who are more
interested in the design problem, the material presented in the
last part of this paper can be consulted first).

We first briefly recall the basic reaction and diffusion principles
in [2,3] for building our networks. Let R¼ ð�1,1Þ, N¼{0,1,y},
Z¼{y,�1,0,1,y} and Z+

¼{1,2,y}. Let vi be the i-th neuron pool,
where iAZ, and vi

(t) be the state value of vi in the time period tAN.
Suppose all vi are placed in an infinite grid such that vi�1 and vi +1

are the left and right neighbors of vi respectively. Additionally, we
assume that for any neuron pool vi, the transmission of information
from time t to time t+1 is affected by itself and its neighbors, and
that there is a control mechanism imposed. Then, it is reasonable to
consider the equation

vðtþ1Þ
i �vðtÞi ¼ aðv

ðtÞ
i�1�2vðtÞi þvðtÞiþ1ÞþgðvðtÞi Þ, iAZ; tAN, ð1Þ

where a is treated as a fixed real proportionality constant and g is a
real (control) function.

In [2], we have studied thoroughly the cases gðxÞ ¼ kx2 or g(x)¼0
for xAR; and in [3], the cases gðxÞ ¼ k or gðxÞ ¼ kðx�lÞ, where k,l
are real parameters.

In this paper, we will assume that g is a polynomial with
simple roots modulo the cases just described. More specifically,
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we assume throughout that L is the ordered set

L¼ fl1,l2, . . . ,lsg, ð2Þ

where sZ2 and l1ol2o � � �ols. We will also assume throughout
the rest of our paper that g in (1) satisfies

gðxÞ ¼ kf ðxÞ, xAR; kAR\f0g, ð3Þ

where

f ðxÞ ¼ ðx�l1Þ � � � ðx�lsÞ, xAR, ð4Þ

i.e., all roots of f are simple and belong to L.
We remark that under the assumption (4), the well-known

discrete Nagumo equation

vðtþ1Þ
i �vðtÞi ¼ aðv

ðtÞ
i�1�2vðtÞi þvðtÞiþ1ÞþkvðtÞi ðv

ðtÞ
i �aÞð1�vðtÞi Þ, iAZ; tAN,

ð5Þ

where aA ð0,1Þ, can be regarded as a special case of (1). Eq. (5) has
been studied in many papers such as [4,5]. Additionally, the
discrete Fisher equation

vðtþ1Þ
i �vðtÞi ¼ aðv

ðtÞ
i�1�2vðtÞi þvðtÞiþ1ÞþkvðtÞi ð1�vðtÞi Þ, iAZ; tAN ð6Þ

is also a special case of (1) which is considered in [6].
Our main concern is the existence and nonexistence of doubly

periodic traveling wave solutions of (1) where g is given by (3). We
will be able to show that when jkj is sufficiently large, such doubly
periodic traveling wave solutions exist, while when jkj is suffi-
ciently small (but ka0 by assumption), some doubly periodic
traveling wave solutions cannot exist.

To this end, we first formalize in the next section the definition
of ‘doubly periodic traveling wave’, then we give the concept of
‘o�traveling wave’ and show that seeking ‘doubly periodic travel-
ing wave solutions’ is equivalent to seeking ‘o�traveling wave
solutions’. In Section 3, we provide several preliminary lemmas. In
Section 4, we further study the properties of ‘o�traveling wave’
solutions such as their distributions, boundedness, etc. In Section 5,
we will show the existence of ‘o�periodic traveling wave’ solu-
tions for our model under appropriate assumptions. In Section 6,
we will provide nonexistence of ‘o�traveling wave’ solutions
under appropriate assumptions. In the final section, we supply
several examples to illustrate our conclusions in the previous
sections.

2. x-Traveling wave solutions

First, recall that a real double sequence fvðtÞi gtAN,iAZ is called a
traveling wave with velocity �d=t if vðtþtÞi ¼ vðtÞiþd for all iAZ and
tAN, where tAZþ and dAZ. Recall also that given a sequence
j¼ fjmg, if oAZþ such that jmþo ¼jm for any mAZ, then o is
called a period of j; furthermore, if o is the least among all periods
ofj, thenj is said to beo�periodic. A simple result about periodic
sequence is the following.

Lemma 2.1 (Cheng and Lin [2]). If y¼ fyig is o�periodic and o1 is a

period of y, then o mod o1 ¼ 0.

Suppose v¼ fvðtÞi gtAN,iAZ is a double sequence. A positive
number x is called a spatial period of v if vðtÞiþx ¼ vðtÞi for all i and
t; furthermore, if x is the least among all spatial periods of v, then v
is called spatial x�periodic. Similarly, a positive number Z is called
a temporal period of v if vðtþZÞi ¼ vðtÞi for all i and t and if Z is the least
among all temporal periods of v, then v is called temporal
Z�periodic. Let tAZþ and dAZ. A double sequence v is said to
be a doubly periodic traveling wave with velocity �d=t if it is a
traveling wave with velocity �d=t and it also has spatial and
temporal periods. If v is temporal D�periodic, spatial U�periodic

and is a traveling wave with velocity �d=t, then v is called a
ðD,UÞ�periodic traveling wave with velocity �d=t.

A double sequence v¼ fvðtÞi gtAN,iAZ is called a solution of (1) if it
renders (1) into an identity after substitution. In this paper, we are
mainly concerned with the existence and nonexistence of
ðD,UÞ�periodic traveling wave solutions of (1) with velocity
�d=t. Such solutions possess basic properties which will be
recalled as follows. Their proofs can be found in [2] or can be
obtained by slightly modifying the corresponding proofs in [2].

Lemma 2.2 (cf. Cheng and Lin [2, Proof of Theorem 2]). Let tAZþ and

dAZ. If {vi
(t)} is a traveling wave solution of (1) with velocity

�d=t, then {wi
(t)}¼{v� i

(t) } is also a traveling wave solution of (1) with

velocity d=t.

In view of Lemma 2.2, we may restrict our attention to traveling
wave solutions with velocity�d=t for dAN and tAZþ . Note that a
traveling wave with velocity �d=t is also a traveling wave with
velocity�ðkdÞ=ðktÞ, where dAN and t,kAZþ . For this reason, in the
sequel, we will only consider t and d that satisfy tAZþ and dAN
such that their greatest common divisor ðt,dÞ� ¼ 1. Such a pair of
relatively prime integers and the corresponding velocity �d=t are
said to be admissible.

Lemma 2.3 (cf. Cheng and Lin [2, Proof of Theorem 2]). Suppose ðt,dÞ
is admissible. If {vi

(t)} is a traveling wave solution of (1) with velocity

�d=t, then the sequence y¼ fymgmAZ defined by

ytiþdt ¼ vðtÞi , iAZ; tAN ð7Þ

is well defined on Z and is a solution of the equation

jmþd�jm ¼ aðjm�t�2jmþjmþtÞþkf ðjmÞ, mAZ, ð8Þ

wherekAR\f0g,aAR and f is the function defined by (4). Conversely, if

y¼{ym} is a solution of (8), then the double sequence {vi
(t)} defined by

(7) is a traveling wave solution of (1) with velocity �d=t.

Suppose ðt,dÞ is admissible. In view of Lemma 2.3, we see that
there is a one-to-one correspondence between all traveling wave
solutions of (1) with velocity�d=t and all solutions of (8). A double
sequence {vi

(t)} is called an o-traveling wave solution1 of (1) with
velocity �d=t if {vi

(t)} is a traveling wave solution of (1) with
velocity�d=t and the ‘associated sequence’ y¼{ym} defined by (7) is
o�periodic.

In the following result, we will need the concepts of (positive)
integral complements and least (positive) integral multiples of
positive fractions. More specifically, given positive integers a andb,
any positive integercu such thatcua=b is also an integer is called an
integral complement of a=b; and least integral complements of a=b
is denoted by cða,bÞ. The number cða,bÞa=b is called the least
integral multiple of a=b.

Lemma 2.4 (cf. Cheng and Lin [2, Proof of Theorem 4]). Suppose ðt,dÞ
is admissible with da0. If v is ano-traveling wave of (1) with velocity

�d=t, then v is also a ðD,UÞ-traveling wave solution of (1) with velocity

�d=t, where U and D are the least positive integral multiples of o=t
and o=d respectively. Conversely, if v is a ðD,UÞ-periodic traveling

wave solution of (1) with velocity�d=t, then v is an o-traveling wave

with velocity�d=t, whereo¼ ðtU,dDÞ�, furthermore, U andD are the

least integral multiples of o=t and o=d respectively.

For the case where ðt,dÞ is admissible with d¼ 0. We also have a
similar result.

Lemma 2.5. Suppose ðt,dÞ is admissible with d¼ 0. If v is a o-
traveling wave solution of (1) with velocity�d=t, then v is also a ðo,1Þ-
traveling wave solution of (1) with velocity �d=t. Conversely, if v is a

1 Also called o�periodic traveling wave solution in [2].
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