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In a study (Szekely, 1965) [1] of the locomotion of salamanders, it is observed that a ‘doubly periodic
traveling wave solution’ of a logical neural network can be used to explain a dynamic pattern of
movements. We show here that nonlinear and nonlogical artificial neural network can also be built by
means of reaction diffusion principles and existence or nonexistence of doubly periodic traveling waves
can be guaranteed by adjusting parameters built into these networks. Our derivations for existence are
based on implicit function theorems and the invariance properties of our model; while nonexistence is
based on boundedness properties of the polynomial reaction term. We also give illustrative examples as
well as comments on the differences between present results with those obtained for linear models
studied earlier in Cheng and Lin (2009) [2,3].
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1. Introduction

Szekely in [1] studied the movement of salamanders and found
that the dynamic locomotive pattern of salamanders can be
simulated by periodic (vector) sequences {v(¥}> . where each
v is also a periodic real sequence of the form {...,v{’,v{’, ...} and
these sequences can be generated by a bipolar neural network. In
[2,3], the authors observed that these vector sequences have

several characteristic properties, namely, they satisfy

v =" . (temporal —spatial transition condition),

t) _ (0 . . P P
v =V, (spatial periodicity condition),

i+r
and
(E+4) _ (D) odici i
v; =v;’ (temporal periodicity condition),

where te{0,1,...,}, 7,4,Y are positive integers and ¢,i are
integers. Such vector sequences are called doubly periodic
(4, Y)—traveling waves and can also be used to explain other
dynamic patterns of movements (see e.g. [3]).

A natural question then is whether we can build artificial neural
networks which can yield such traveling waves. To this end, in [2,3],
we apply reaction and diffusion principles to build several dynamic
network models and obtain the exact conditions the required
traveling waves may or may not be generated by them. The
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network in [2] has a linear ‘diffusion part’ and a nonlinear ‘reaction
part’. However, the reaction part consists of a quadratic polynomial
so the investigation is reduced to a linear homogeneous problem.
The network in [3] has the same diffusion part, but has a linear
‘reaction part'. It is therefore of great interests to build nonlinear
networks with general polynomials as the reaction terms, and see if
the desired traveling waves exist (for readers who are more
interested in the design problem, the material presented in the
last part of this paper can be consulted first).

We first briefly recall the basic reaction and diffusion principles
in [2,3] for building our networks. Let R = (—o0,00), N={0,1,...},
Z={...,—1,0,1,...}and Z" ={1,2,...}. Let v; be the i-th neuron pool,
where i € Z, and 1{? be the state value of v; in the time period t € N.
Suppose all v; are placed in an infinite grid such that v;_; and v;.4
are the left and right neighbors of v; respectively. Additionally, we
assume that for any neuron pool v;, the transmission of information
from time ¢ to time t+1 is affected by itself and its neighbors, and
that there is a control mechanism imposed. Then, it is reasonable to
consider the equation
VD v = o 200 V) +g(vY), ieZ: teN, 1)
where « is treated as a fixed real proportionality constant and gis a
real (control) function.

In[2], we have studied thoroughly the cases g(x) = xx2 or g(x)=0
for x e R; and in [3], the cases g(x) = k or g(x) = k(x—A), where x,1
are real parameters.

In this paper, we will assume that g is a polynomial with
simple roots modulo the cases just described. More specifically,


www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.002
mailto:quick00123@yahoo.com.tw
dx.doi.org/10.1016/j.neucom.2010.11.002

1084 JJ. Lin, S.S. Cheng / Neurocomputing 74 (2011) 1083-1094

we assume throughout that A is the ordered set
A={,22,.... 4}, 2)

wheres>2and 21 </, < --- < 4. We will also assume throughout
the rest of our paper that g in (1) satisfies

gx)=xkf(x), xeR; keR\(0}, 3)
where
f)=x="121)- - (X=1s),

i.e., all roots of f are simple and belong to A.
We remark that under the assumption (4), the well-known
discrete Nagumo equation

xeR, “4)

t+1 t t t t t t t .
VD v = v —2vP + v D+ v (O —a) (1), ieZ; teN,
€)]

where a € (0,1), can be regarded as a special case of (1). Eq. (5) has
been studied in many papers such as [4,5]. Additionally, the
discrete Fisher equation

VD0 — o0 200 v v (1-vY), ieZ; teN (6

is also a special case of (1) which is considered in [6].

Our main concern is the existence and nonexistence of doubly
periodic traveling wave solutions of (1) where g is given by (3). We
will be able to show that when |k| is sufficiently large, such doubly
periodic traveling wave solutions exist, while when |x| is suffi-
ciently small (but x #0 by assumption), some doubly periodic
traveling wave solutions cannot exist.

To this end, we first formalize in the next section the definition
of ‘doubly periodic traveling wave’, then we give the concept of
‘w—traveling wave’ and show that seeking ‘doubly periodic travel-
ing wave solutions’ is equivalent to seeking ‘w—traveling wave
solutions’. In Section 3, we provide several preliminary lemmas. In
Section 4, we further study the properties of ‘w—traveling wave’
solutions such as their distributions, boundedness, etc. In Section 5,
we will show the existence of ‘w—periodic traveling wave’ solu-
tions for our model under appropriate assumptions. In Section 6,
we will provide nonexistence of ‘w—traveling wave’ solutions
under appropriate assumptions. In the final section, we supply
several examples to illustrate our conclusions in the previous
sections.

2. w-Traveling wave solutions

First, recall that a real double sequence {v{"}, .y, .z is called a
traveling wave with velocity —d/7 if v’ *® =v{" ; for all i Z and
teN, where teZ" and 6 €Z. Recall also that given a sequence
@ ={@,} if oeZ* suchthat ¢,,, , =@, for any meZ, then o is
called a period of ¢; furthermore, if w is the least among all periods
of ¢, then ¢ is said to be cw—periodic. A simple result about periodic
sequence is the following.

Lemma 2.1 (Cheng and Lin [2]). Ify = {y;} is w—periodic and w1 is a
period of y, then w mod w; =0.

Suppose v={v{"};,_n;cz is a double sequence. A positive
number ¢ is called a spatial period of v if v{?) . =v{” for all i and
t; furthermore, if £ is the least among all spatial periods of v, then v
is called spatial {—periodic. Similarly, a positive number # is called
a temporal period of vif v\ *" = v{" for all i and t and if 7 is the least
among all temporal periods of v, then v is called temporal
n—periodic. Let TeZ* and d e Z. A double sequence Vv is said to
be a doubly periodic traveling wave with velocity —d/t if it is a
traveling wave with velocity —J/t and it also has spatial and
temporal periods. If v is temporal A4—periodic, spatial Y—periodic

and is a traveling wave with velocity —d/t, then v is called a
(4, Y)—periodic traveling wave with velocity —d/z.

A double sequence v = (V\"}, ..z is called a solution of (1) if it
renders (1) into an identity after substitution. In this paper, we are
mainly concerned with the existence and nonexistence of
(4, Y)—periodic traveling wave solutions of (1) with velocity
—d/7. Such solutions possess basic properties which will be
recalled as follows. Their proofs can be found in [2] or can be
obtained by slightly modifying the corresponding proofs in [2].

Lemma2.2 (cf. Chengand Lin[2, Proof of Theorem 2]). Lett e Z* and
deZ If (1P} is a traveling wave solution of (1) with velocity
—d/1, then (W{}={v'} is also a traveling wave solution of (1) with
velocity o/t.

In view of Lemma 2.2, we may restrict our attention to traveling
wave solutions with velocity —J/7 for s e Nand T e Z*. Note that a
traveling wave with velocity —o/7 is also a traveling wave with
velocity —(kd)/(kt), where e Nand 7,k € Z" . For this reason, in the
sequel, we will only consider 7 and J that satisfy teZ" and 6 N
such that their greatest common divisor (7,d), = 1. Such a pair of
relatively prime integers and the corresponding velocity —d/7 are
said to be admissible.

Lemma 2.3 (cf. Cheng and Lin [2, Proof of Theorem 2]). Suppose (t,0)
is admissible. If {v{"} is a traveling wave solution of (1) with velocity
—0/t, then the sequence Yy = {(Ym}m  z defined by

Yeivoe =V, i€Z teN ©)
is well defined on Z and is a solution of the equation
(Pm+<5_(pm :a((pm—r_zq)m+(pm+f)+Kf((pm)' m EZ' (8)

where k € R\{0}, « € Rand fis the function defined by (4). Conversely, if
y={ym} is a solution of (8), then the double sequence {v"} defined by
(7) is a traveling wave solution of (1) with velocity —J/t.

Suppose (t,9) is admissible. In view of Lemma 2.3, we see that
there is a one-to-one correspondence between all traveling wave
solutions of (1) with velocity —dJ/t and all solutions of (8). A double
sequence {v{?} is called an w-traveling wave solution® of (1) with
velocity —d/t if {v{P} is a traveling wave solution of (1) with
velocity —o/t and the ‘associated sequence’y={y,,} defined by (7) is
w—periodic.

In the following result, we will need the concepts of (positive)
integral complements and least (positive) integral multiples of
positive fractions. More specifically, given positive integers o and f3,
any positive integer v’ such that o/ is also an integer is called an
integral complement of o/ f3; and least integral complements of o/ §
is denoted by y/(o,f). The number y(a,f)o/f is called the least
integral multiple of o/ f.

Lemma 2.4 (cf. Cheng and Lin [2, Proof of Theorem 4]). Suppose (7,0)
is admissible with 6 # 0. If v is an w-traveling wave of (1) with velocity
—d/t, thenvis also a (4, Y)-traveling wave solution of (1) with velocity
—0/t, where Y'and A are the least positive integral multiples of w/t
and w/o respectively. Conversely, if v is a (4, Y)-periodic traveling
wave solution of (1) with velocity —d/t, then v is an w-traveling wave
with velocity —J/t, where w = (1 Y,04),, furthermore, Yand A are the
least integral multiples of /T and w /o respectively.

For the case where (7,6) is admissible with 6 = 0. We also have a
similar result.

Lemma 2.5. Suppose (t,d) is admissible with 6 =0. If v is a w-
traveling wave solution of (1) with velocity —d/t, thenvis also a (w,1)-
traveling wave solution of (1) with velocity —4J /1. Conversely, if v is a

1 Also called w—periodic traveling wave solution in [2].
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