
New delay-interval-dependent stability criteria for static neural
networks with time-varying delays

S. Senthilraj a, R. Raja b, Quanxin Zhu c,d, R. Samidurai a, Zhangsong Yao e,n

a Department of Mathematics, Thiruvalluvar University, Vellore - 632 115, India
b Ramanujan Centre for Higher Mathematics, Alagappa University, Karaikudi - 630 004, India
c School of Mathematical Sciences and Institute of Finance and Statistics, Nanjing Normal University, Nanjing 210023, Jiangsu, China
d Department of Mathematics, University of Bielefeld, Bielefeld D-33615, Germany
e School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China

a r t i c l e i n f o

Article history:
Received 25 September 2015
Received in revised form
27 December 2015
Accepted 28 December 2015
Communicated by Hongyi Li
Available online 4 January 2016

Keywords:
Static neural network
Lyapunov functional
Time-varying delay
Delay-interval-dependent stability
Delay partitioning approach

a b s t r a c t

This paper introduces an effective approach to study the stability of static neural networks with interval
time-varying delay using delay partitioning approach and tighter integral inequality lemma. By
decomposing the delay interval into multiple equidistant subintervals and multiple nonuniform sub-
intervals, some suitable Lyapunov–Krasovskii functionals are constructed on these intervals. A set of
novel sufficient conditions are obtained to guarantee the stability analysis issue for the considered
system. These conditions are expressed in the framework of linear matrix inequalities, which heavily
depend on the lower and upper bounds of the time-varying delay. It is shown, by comparing with
existing approaches, that the delay-partitioning approach can largely reduce the conservatism of the
stability results. Finally, three examples are given to show the effectiveness of the theoretical results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Various classes of neural networks have been active research
topics in the past few year, due to its practical importance and
successful applications in many areas such as aerospace, data
mining, signal filtering, parallel computing, robotic and tele-
communications, see e.g. [1,2]. This led to significant attraction of
many researchers, like mathematicians, physicists, computer sci-
entists and biologist. The achieved applications heavily depend on
the dynamic behaviors of the equilibrium point of neural net-
works. That is, stability is one of the main properties of neural
networks, which is a crucial feature in the design of neural
networks.

It is well-known that time delays are always unavoidably
encountered in the implementation of neural networks due to the
finite switching speed of neurons and amplifiers. So the issue of
stability analysis of neural networks with time delays attracts
many researchers and a large number of stability results have been
reported in the literature [3–6]. The obtained results can be clas-
sified into two types: delay-dependent criteria [7–15] and delay-

independent criteria [16,17]. Generally speaking, delay-dependent
stability criteria are usually less conservative than delay-
independent ones especially when the size of the delay is small.
And, pursuing the delay-dependent stability criteria is of much
theoretical and practical value.

Depending on the modeling approaches, neural networks can
be modeled either as a static neural network model or as a local
field neural network model [18,19]. The local neural network and
static neural network can be transferred equivalently from one to
the other under some assumptions, but these assumptions cannot
always be satisfied in many applications [20]. That is, local field
neural network models and static neural network models are not
always equivalent. Thus, it is necessary and important to study
them separately.

In [21], the global exponential stability criteria is obtained for
static recurrent neural networks to ensure the existence and
uniqueness of the equilibrium, based on the nonlinear measure.
The authors in [22], investigated the problem for static neural
network with constant delay using delay partitioning approach
and Finsler's Lemma. Li et al. [23] employed a unified approach in
stability analysis of generalized static neural networks with time-
varying delays and linear fractional uncertainties by utilizing some
novel transformation and discretized scheme. In [24], stability
criteria is derived for both delay-independent and delay-
dependent conditions using augmented Lyapunov functional and
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it realizes the decoupling of the Lyapunov function matrix and the
coefficient matrix of the neural networks. The stability and dis-
sipativity problems of static neural networks with time-varying
delay were investigated in [25]. Sun et al. [26] presented the sta-
bility criteria for a class of static neural networks by constructing
new augmented Lyapunov functional which fully uses the infor-
mation about the lower bound of the delay and contains some
new double integral and triple integral terms. Nevertheless, the
results obtained in [24–26] are based on simple Lyapunov–Kra-
sovskii functionals and are still conservative. Therefore, there is
much room for further investigation. This motivates us to carry out
this work.

In this paper, our research efforts are focused on developing a
new approach to analyze the stability of neural networks with
interval time-varying delays. In order to obtain some less con-
servative sufficient conditions, firstly, we decompose the delay
interval ½�h2;0� into ½�h2; �h1� and ½�h1;0�. Secondly we
decompose the delay interval ½�h1;0� into m equidistant sub
intervals. Furthermore, we choose different weighting matrices
that is ½�h1;0� ¼⋃m

i ¼ 1½� ih1m; �ði�1Þh1m�. Lastly, we decompose the
delay interval ½�h2; �h1� into r nonuniform subintervals and we
choose different weighting matrices that is
½�h2; �h1� ¼⋃r

j ¼ 1½�h1� jq; �h1�ðj�1Þq�, with q¼ h2 �h1
r : The

innovation of the method includes employment of a tighter inte-
gral inequality and construction of an appropriate type of Lyapu-
nov functional. Finally, two numerical examples are shown to
illustrate the merits of the proposed methods.

Notations. Throughout this paper, Rn and Rn�m denotes the n-
dimensional Euclidean space and the set of all n�m real matrices,
respectively. The notation XZ0 (respectively, X40), where X is
symmetric matrices, means that X is positive semi definite
(respectively, positive definite). The subscript T denotes the
transpose of the matrix. The notation “n” is used as an ellipsis for
terms that are induced by symmetry. Matrices, if their dimensions
are not explicitly stated, are assumed to have compatible dimen-
sions for algebraic operations.

2. Problem formulation

Consider the following static neural networks with interval
time-varying delay:

_uðtÞ ¼ �AuðtÞþgðWuðt�dðtÞÞþ JÞ; ð1Þ
where uðtÞ ¼ ½u1ðtÞ;u2ðtÞ;…;unðtÞ�T denotes the state vector, A¼
diagða1; a2;…; anÞ with ai40, i¼ 1;2;…;n, gðWuð�ÞÞ ¼ ½g1ðW1u ð�ÞÞ;
g2ðW2uð�ÞÞ;…; gnðWnuð�ÞÞ�T is the activation function. W ¼ ½WT

1; W
T
2

;…;WT
n�T is the delayed connection weight matrix. J ¼ ½j1; j2;…; jn�T

is a constant input. d(t) is the time-varying delay and satisfies

0rh1rdðtÞrh2 ð2Þ
and

_dðtÞrμ; ð3Þ
where h1;h2 are known positive scalars, and μ is a constant. It is
assumed that the neuron activation functions gð�Þ satisfy the fol-
lowing condition.

Assumption 1 (Liu et al. [34]). The neuron activation functions gi
ð�Þði¼ 1;…;nÞ are continuous, bounded and satisfy

bir
giðα1Þ�giðα2Þ

α1�α2
r li; 8 α1;α2AR; α1aα2; i¼ 1;2;…;n; ð4Þ

where bi; li are known real constants.

The equilibrium point of system (1) whose existence is guar-
anteed by (4) and uniqueness has been reported in [27] is denoted

by un ¼ ½un

1;u
n

2;…;un
n�. Let us define xð�Þ ¼ uð�Þ�un, then system (1)

can be transformed into the following form:

_xðtÞ ¼ �AxðtÞþ f ðWxðt�dðtÞÞÞ; ð5Þ
where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T is the state vector of the trans-
formed system, f ðWxð�ÞÞ ¼ ½f 1ðW1xð�ÞÞ; f 2ðW2xð�ÞÞ;…; f nðWn xð�ÞÞ�T
with f ðWxð�ÞÞ ¼ gðWxð�Þþunþ JÞ�gðWunþ JÞ. Functions f ið�Þ;
i¼ 1;2;…;n, satisfy the following condition:

bir
f iðα1Þ� f iðα2Þ

α1�α2
r li; f ið0Þ ¼ 0; 8α1;α2AR; α1aα2; i¼ 1; 2;…;n:

ð6Þ
The objective of this paper is to investigate delay-dependent
stability conditions for system (5). Before deriving our main
results, we state the following lemmas.

Lemma 2.1 (Han [28]). For any constant matrix RARn�n, scalars
h40, and vector function _x : ½�h;0�-Rn such that the integration is
well defined, then the following inequality holds:

�h
Z t

t�h
_xT ðsÞR _xðsÞ dsr

xðtÞ
xðt�hÞ

" #T �R R

n �R

� � xðtÞ
xðt�hÞ

" #
: ð7Þ

Lemma 2.2. For any constant matrix RARn�n, R¼ RT 40, scalars
b1rτðtÞrb2 and vector function _x : ½�b2; �b1�-Rn such that the
integration is well defined, then the following inequality holds:

�ðb2�b1Þ
Z t�b1

t�b2

_xT ðsÞR _xðsÞ dsrξT ðtÞΩ̂ξðtÞ;

where

ξðtÞ ¼
xðt�b1Þ
xðt�τðtÞÞ
xðt�b2Þ

2
64

3
75; Ω̂ ¼ΩþτðtÞ�b1

b2�b1
Ω1þ

b2�τðtÞ
b2�b1

Ω2;

Ω¼
�R R 0
n �2R R

n n �R

2
64

3
75; Ω1 ¼

0 0 0
n �R R

n n �R

2
64

3
75;

Ω2 ¼
�R R 0
n �R 0
n n 0

2
64

3
75:

Proof. When b1rτðtÞrb2; from Leibniz–Newton formula and
using Jensen's inequality, we have

�ðb2�b1Þ
Z t�b1

t�b2

_xT ðsÞR _xðsÞ ds¼ �ðb2�b1Þ
Z t�b1

t� τðtÞ
_xT ðsÞR _xðsÞ ds

"

þ
Z t� τðtÞ

t�b2

_xT ðsÞR _xðsÞ ds
�
¼ � ðb2�τðtÞÞþðτðtÞ�b1Þ

� �
Z t�b1

t�τðtÞ
_xT ðsÞR _xðsÞ dsþ

Z t� τðtÞ

t�b2

_xT ðsÞR _xðsÞ ds
" #

¼ �ðb2�τðtÞÞ

Z t� τðtÞ

t�b2

_xT ðsÞR _xðsÞ ds�ðτðtÞ�b1Þ
Z t�b1

t�τðtÞ
_xT ðsÞR _xðsÞ ds�ðb2�τðtÞÞ

Z t�b1

t� τðtÞ
_xT ðsÞR _xðsÞ ds�ðτðtÞ�b1Þ

Z t�τðtÞ

t�b2

_xT ðsÞR _xðsÞ ds: ð8Þ

The first two right-side terms of (8) are dealt using Lemma 2.1 as
follows:

�ðb2�τðtÞÞ
Z t�τðtÞ

t�b2

_xTðsÞR _xðsÞ dsr
xðt�τðtÞÞ
xðt�b2Þ

" #T �R R

n �R

� � xðt�τðtÞÞ
xðt�b2Þ

" #
;

ð9Þ
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