
Design of experiments and focused grid search for neural network
parameter optimization

F.J. Pontes a, G.F. Amorim b,c,n, P.P. Balestrassi b, A.P. Paiva b, J.R. Ferreira d

a UNESP (Universidade Estadual Paulista)-Avenida Ariberto Pereira da Cunha, no. 333, Pedregulho, Guaratinguetá, SP CEP: 12516-410, Brazil
b Institute of Industrial Engineering and Management, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG
CEP: 37500-903, Brazil
c University of Tennessee – Knoxville Through the Science Without Borders Program, United States
d Institute of Mechanical Engineering, UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho, Itajubá, MG CEP: 37500-903,
Brazil

a r t i c l e i n f o

Article history:
Received 15 January 2015
Received in revised form
16 November 2015
Accepted 28 December 2015
Available online 21 January 2016

Keywords:
Design of Experiment
Focused Grid Search
Artificial Neural Network
Machining
Tuning

a b s t r a c t

The present work offers some contributions to the area of surface roughness modeling by Artificial
Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a
Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface
Roughness (Ra). The tuning method is expressed in the format of an algorithm employing two techniques
from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP).
Datasets retrieved from literature are employed to form training and test data sets for the ANN. The
proposed tuning method leads to significant reduction of roughness prediction errors in machining
operations in comparison to techniques currently used. It constitutes an effective option for the sys-
tematic design models based on ANN for prediction of surface roughness, filling the gap reported in the
literature on this subject.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

As newcomers to the use of Artificial Neural Networks (ANN),
researchers on the field of manufacturing started to explore ways
to apply networks to control or to foresee critical product quality
features, and to optimize multiple objective production processes.
The growing number of papers published during the past decade
testifies this interest.

Machining processes, for example, generates surfaces or parts
through removal of material. Production rate, cost, and product
quality are conflicting objectives in this kind of process, posing
additional challenges to its planning and optimization [1,2]. One
feature particularly difficult to control in machined products is the
surface roughness, a widely used index of product quality and a
technical requirement for machined parts [3]. It affects properties
such as fatigue behavior, corrosion resistance, friction, wear, light

reflection, heat transmission, lubrication, electrical conductivity
and coating [4,5].

The ability to accurately control surface quality can reduce
machining costs by lessening the rework activities. It means that
this is not just a defying issue, but also an area of research interest.
The surface roughness cannot be controlled as accurately [6]
because it is influenced by many variables like steel properties,
tool material and geometry, vibration of cutting tool, cutting
speed, feed, depth of cut, lubricant, and others [7].

Although online roughness control applications are found in
literature, a more common approach is the application of ANNs to
offline control based on process parameters. Off-line quality
techniques are considered an effective approach to improve pro-
duct quality at a relatively low cost [8]. A survey on practical
efforts for network topology optimization reveals a drive towards
parameter optimization. Jiménez et al. [9], for example, used
Focused Grid Search (FGS) techniques for classification problems.

Despite the enthusiasm of using ANN for roughness control, the
results obtained are mixed: in many cases, authors deem networks
performance as equal or even worse in comparison to other mod-
eling techniques [3,10,11]. However, a close examination on litera-
ture reveals some issues such as basics of neurocomputing being
disregarded in many works. A broad review [12] found that in more
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than 40% of papers dealing with surface roughness controlled by
ANNs, networks are designed by trial and error and in less than 10%
any effort to optimize network topologies could be positively
identified. This paper proposes then a method for tuning optimized
networks of Multi-Layer Perceptron (MLP) architecture applied here
for Average Surface Roughness (Ra) control in machining processes.
By combining two distinct techniques, Design of Experiments (DOE)
and Focused Grid Search (FGS), this work manages to establish
optimization decisions based on solid statistical criteria. It is inno-
vative because of the sequential use of DOE arrangements for
finding optimal model parameters. DOE is an applied statistical
methodology whose use allows to plan experiments capable of
generating appropriate data for an efficient statistical analysis,
resulting in valid and objective conclusions [13].

The strategy adopted consists in the use of DOE arrangements
to search for network configurations that benefits output control.
This method addresses problems found with previous optimiza-
tion attempts: (1) It imposes no restriction on the outer search
limits; (2) It avoids the use of large intervals between levels of
design factors adopted in experimental planning; (3) It addresses
the simultaneous optimization of the selected design parameters;
(4) It takes into consideration the effects of interaction among
design factor levels; and (5) As an algorithm, it proposes a sys-
tematic design method for ANN practical use. The last one is
pointed as a limiter and as a disadvantage in many works [14–17].

This paper is then organized as follows. Section 2 briefly
reviews concepts of machining, surface roughness and the use of
DOE for ANN optimization. Section 3 explains the work's reor-
ientation toward Evolutionary Operations (EVOP). Section 4 pre-
sents the optimization method algorithm for ANN tuning in
details. Section 5 shows the experimental strategy, and Section 6
approaches the two works selected for comparison. Section 7
shows and compares the results of the optimization method to the
results of the works dataset were extracted for, and to the results
of a software package intended to optimize ANN architectures.
Conclusions and suggestions for further research are then pre-
sented in Section 8.

2. Background and literature review

Machining is a process that generates surfaces through removal
of material, conferring form and dimension to a part. Turning is
the most common machining operation [18], being characterized
by simultaneous and continuous movement of part and tool.
Turning is controlled by its movements, which are: feed, depth of
cut and cutting speed. One of the main quality features resulting
frommachining process is the surface roughness, which can define
functional behaviors of a part such as fatigue life, wear patterns,
lubricant retention, or resistance to corrosion [10,19,20]. It is
linked to machine tool errors, workpiece deformation, vibration,
workpiece material inhomogenities, cutting edges shape and
condition, chip formation, cutting parameters, and physicochem-
ical mechanisms acting on workpiece grain and lattice structures
[7]. As pointed out, it plays an important role in determining the
quality of a machined product [21,22].

Roughness is then an indicator of process performance and
must be controlled within proper limits for particular machining
operations [23]. The process-dependent nature of roughness for-
mation, along with many uncontrollable factors, makes difficult to
keep it between desirable limits, i.e. to control it [7,19]. Operators
use their own experience and machining guidelines in order to
achieve the best possible surface finish [24].

Among the parameters to measure surface roughness, the most
commonly used is Roughness Average (Ra). It is the arithmetic
average of the absolute value of the heights of roughness

irregularities from the mean value measured [25]. For discrete
measurement, Ra can be defined as in Eq. (1) [26].

Ra ¼
1
n

Xn

i ¼ 1

jyi j ð1Þ

the roughness average (Ra) is typically measured in micrometers
(μm), n is the number of samples in a given length, and |yi| stands
for the absolute measured values of the peak and valley in relation
to the center line average. According to international standards
[27], machining processes can achieve roughness values ranging
from 0.025 μm to 50 μm.

Efforts to model roughness involve analytical, experimental
and AI techniques [28]. Theoretical and empirical models, how-
ever, suffer from a number of problems. Theoretical models take
no account of imperfections in the real process, such as tool
vibration or chip adhesion [20]. Empirical models have their
application limited to very specific operational conditions. The
experience in both cases is then poor, as stated in many works
[29,30].

The use of ANNs in machining processes has been encouraged
in a considerable number of papers. Authors sustain that ANNs are
a good alternative to conventional empirical modeling based on
linear regressions for surface roughness modeling [10], also
maintain that neural networks are able to capture the turning
characteristic of non-linearity [24]. In hard turning operations,
some authors approaches the difficulty of generating explicit
analytical models with the complex relationship among the
parameters involved and, according to them, ANN pose a suitable
and practical option for modeling [31].

There is no consensus, however, on the experience with ANN
for roughness modeling. Some authors point to the lack of sys-
tematic design methods as a disadvantage [14]. Others claim that
finding a good ANN architecture requires several modeling
attempts, making it a time consuming activity [15,16]. Researchers
also testify the need of large amounts of data for training and
validation as restrictions to the practical application of ANN in
machining processes [32].

The most popular approaches for ANN design are empirical
search optimization (trial and error), pruning and constructive
approach [33]. Trial and error is common practice in most works
on the field of intelligent systems [17]. In more than 40% of the
papers using ANN, network topologies are explicitly defined by
trial and error; Clear optimization efforts are detected in less than
10% [12]. The application of statistics for network topology opti-
mization is not widespread in literature. The few examples found
shows that the full potential of this subject is not uncovered yet.
This factor could contribute to such a mixed view of ANNs abilities
controlling model roughness.

DOE technique is based on the concept of simultaneous varia-
tion of factors levels, in order to build forecasting models for
relevant outputs [13]. An additional advantage is that DOE prin-
ciples can be implemented in a well-defined and relatively low
number of experiments [30]. It is one of the most important
methodologies for researchers dealing with experiments in prac-
tical applications and its tools are incorporated in many statistical
software packages that ease calculation and interpretation of
results [34].

A DOE application for ANN optimization in machining process
can be found in [31]. The authors employed a DOE arrangement
called Taguchi to select the inputs for roughness prediction in CNC
face milling process. In [35], the development of roughness pre-
diction model for polymer blends machining using MLP trained by
back-propagation is also proposed employing Taguchi. Besides
roughness prediction, some DOE applications for network opti-
mization can be found such as tool wear [36] or thickness
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