
Software reliability prediction via relevance vector regression

Jungang Lou a,b, Yunliang Jiang b,n, Qing Shen b, Zhangguo Shen b, Zhen Wang c,
Ruiqin Wang b

a Institute of Cyber-Systems and Control, Zhejiang Univeristy, 310027 Hangzhou, China
b School of Information Engineering, Huzhou University, 313000 Huzhou, China
c College of Computer Science and Technology, Shanghai University of Electric Power, 200090 Shanghai, China

a r t i c l e i n f o

Article history:
Received 21 September 2015
Received in revised form
27 November 2015
Accepted 9 December 2015
Communicated by Liang Wang
Available online 6 January 2016

Keywords:
Software reliability model
Relevance vector machine
Mann–Kendall test
Paired T-test

a b s t r a c t

The aim of software reliability prediction is to estimate future occurrences of software failures to aid in
maintenance and replacement. Relevance vector machines (RVMs) are kernel-based learning methods
that have been successfully adopted for regression problems. However, they have not been widely
explored for use in reliability applications. This study employs a RVM-based model for software relia-
bility prediction so as to capture the inner correlation between software failure time data and the nearest
m failure time data. We present a comparative analysis in order to evaluate the RVMs effectiveness in
forecasting time-to-failure for software products. In addition, we use the Mann-Kendall test method to
explore the trend of predictive accuracy as m varies. The reasonable value range of m is achieved through
paired T-tests in 10 frequently used failure datasets from real software projects.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the modern world, computers are used for many different
applications, and research on software reliability has become
increasingly essential. Software reliability describes the probability
that software will operate without failure under given environmental
conditions during a specified period of time [1]. To date, software
reliability models are among the most important tools in software
reliability assessment [2]. Most existing software reliability models,
known as parametric models, depend on priori assumptions about
software development environments, the nature of software failures,
and the probability of individual failures occurring. Parametric models
may exhibit different predictive capabilities across different software
projects [3–8], and researchers have found it almost impossible to
develop a parametric model that can provide accurate predictions
under all circumstances. To address this problem, several alternative
solutions have been introduced over the last decade. One possible
solution is to employ artificial neural networks (ANNs) [9–17]. Kar-
unanithi et al., Dohi et al., Cai et al., Ho et al., Tian and Noore and Hu
et al. used both classical and recurrent multi-layer perceptron neural
networks to forecast software reliability. ANNs have proven to be
universal approximates for any nonlinear continuous function with an
arbitrary accuracy. Consequently, they represent an alternative method

in software reliability modeling and predicting. Unlike traditional
statistical models, ANNs are data-driven, nonparametric weak models
[9,11,13,14]. ANN-based software reliability models require only failure
history as an input, and they can predict future failures more accu-
rately than some commonly used parametric models. However, ANNs
suffer from a number of weaknesses, including the need for numerous
controlling parameters, difficulty in obtaining a stable solution, and a
tendency to cause over fitting. A novel type of learning machine,
kernel machines (KMs), is emerging as a powerful modeling tool, and
it has received increasing attention in the domain of software relia-
bility prediction. Kernel-based models can achieve better predictive
accuracy and generalization performance, thus arousing the interest of
many researchers [18–22]. Generally speaking, KMs have been suc-
cessfully applied to regressions, with remarkable training results even
given a relatively small dataset D¼ fðx1; y1Þ; ðx2; y2Þ;…; ðxl; ylÞgA
Rd � R, where xt are input vectors, yt are output vectors, t ¼ 1;2;…; l ,
d is a dimension of xt, and l is the number of observed input/output
pairs [18].

Examples of KMs include support vector machines (SVMs) and
relevance vector machines (RVMs). Vapnik [18] developed SVMs with
the goal of minimizing the upper boundary of the generalization error
consisting of the sum of the training error and confidence interval,
which appears to be less computationally demanding. Tian and Noore
[19] proposed an SVM-based model for software reliability prediction
that embraces some remarkable characteristics of SVMs, including
good generalization performance, absence of local minima, and sparse
solution representation. Pai and Hong [20] and Yang and Li [21] also
made efforts to develop SVM-based reliability models, showing that

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.12.077
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: loujungang0210@hotmail.com (J. Lou),

jylsy@hutc.zj.cn (Y. Jiang), sq@hutc.zj.cn (Q. Shen), szgxx@hutc.zj.cn (Z. Shen),
wangzhenqq@hotmail.com (Z. Wang), angelwrq@163.com (R. Wang).

Neurocomputing 186 (2016) 66–73

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.12.077
http://dx.doi.org/10.1016/j.neucom.2015.12.077
http://dx.doi.org/10.1016/j.neucom.2015.12.077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.077&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.077&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.077&domain=pdf
mailto:loujungang0210@hotmail.com
mailto:jylsy@hutc.zj.cn
mailto:sq@hutc.zj.cn
mailto:szgxx@hutc.zj.cn
mailto:wangzhenqq@hotmail.com
mailto:angelwrq@163.com
http://dx.doi.org/10.1016/j.neucom.2015.12.077

these models can achieve good prediction accuracy. However, SVMs
are sensitive to uncertainties because of the lack of probabilistic out-
puts, as well as the need to determine a regularization parameter and
select appropriate kernel functions to obtain optimal prediction
accuracy [22–25].

This paper proposes a new data-driven approach for predicting
software reliability using RVM [23–27] to capture the uncertainties
in software failure data and predictions about possible present and
future aquifer conditions. RVM adopts kernel functions to project
the input variables into a high-dimensional feature space, in order
to extract the latent information. Compared to SVM, it uses fewer
kernel functions and avoids the use of free parameters [28–30].

The kernel-based software reliability modeling process also
focuses on choosing the number of past observations related to the
future value. Some researchers suggest that failure behavior earlier
in the testing process has less impact on later failures, and
therefore not all available failure data should be used in model
training. However, to the best of our knowledge, such claims lack
either theoretical support or experimental evidence. This study
uses the Mann–Kendall test and paired T-test [31–33] to investi-
gate the appropriate number of past observations related to the
future value for RVM-based software reliability modeling.

The paper is organized as follows. After explaining the background
of the research, Part 2 outlines the principle of RVM for regression. Part
3 introduces the framework for software reliability prediction based
on RVM and describes how RVM regression can be used in predicting
software failure time. Part 4 discusses the process for RVM-based
software reliability models and presents experimental datasets and
measures for evaluating predictability. Following that, Part 5 explains
the Mann–Kendall test and paired T-test, demonstrates the detailed
experimentation process, and analyzes the experimental results on the
10 datasets. Finally, Part 6 concludes the paper.

2. RVM for regression

Support vector machines (SVMs) are a set of related supervised
learning methods used for classification and regression. The goal of
SVMs classification is to separate an n-dimensional data space (trans-
formed using nonlinear kernels) by an ðn� lÞ-dimensional hyper-plane
that creates the maximum separation (margin) between two classes.
This technique can be extended to regression problems in the form of
support vector regression. Regression is essentially an inverse classifi-
cation problem where, instead of searching for a maximum margin
classifier, a minimum margin fit needs to be found. However, SVMs are
not well suited to software reliability prediction due to the lack of
probabilistic outputs. Tipping [24–27] introduced the RVM which
makes probabilistic predictions and yet which retains the excellent
predictive performance of the support vector machine. It also preserves
the sparseness property of the SVM. The RVM is a Bayesian form
representing a generalized linear model of identical functional form to
the SVM, and it is a Bayesian sparse kernel technique for regression,
which introduces a prior over the model weights dominated by a set of
hyper-parameters, whosemost probable values are iteratively estimated
from the data. In addition to the probabilistic interpretation of its out-
put, it uses far fewer kernel functions for comparable performance. We
give a brief review of RVM for regression. For a more detailed discussion
on RVM, readers can refer to [24–27]. Assuming that a total of N pairs of
training patterns are given during RVM learning process,

ðx1; t1Þ; ðx2; t2Þ;…; ðxi; tiÞ;…; ðxN ; tNÞ;

where the inputs are n-dimensional vectors xiARn and the target
outputs are continuous values tiAR. The RVM model used for function

approximation is:

t ¼ yðx;wÞ ¼
XM
i ¼ 1

wiKðx; xiÞþw0 ð1Þ

where these fwig are the parameters of the model, generally called
weights, and Kð; Þ is the kernel function. Assuming that each example
from the data set has been generated independently (an often realistic
assumption, although not always true), the likelihood of all the data is
given by the product:

pðtjσ2Þ ¼ ∏
n

i ¼ 1
Nðtijyðxi;wÞ;σ2Þ ¼ ð2πσ2ÞN=2exp � Jt�ΦwJ2

2σ2

 !

where w¼ ½w0;w1;w2;…;wN �T , Φ¼ ½ϕðx1Þ;ϕðx2Þ;…;ϕðxNÞ�T , and
ϕðxnÞ ¼ ½1;Kðxn; x1Þ;Kðxn; x2Þ;…;Kðxn; xNÞ�T :
Next we introduce a prior distribution over the parameter vectorw. The
key difference in the RVM is that we introduce a separate hyperpara-
meter αi for each of the weight parameterswi instead of a single shared
hyperparameter. Thus, the weight prior takes the form:

pðwjαÞ ¼ ∏
N

i ¼ 0

αiffiffiffiffiffiffi
2π

p exp �αiw2
i

2

� �
; α¼ ½α1;α2;…;αN�:

Having defined the prior, Bayesian inference proceeds by computing,
from Bayes rule, the posterior over all unknowns give the data:

pðw;α;σ2jtÞ ¼ pðtjw;α;σ2Þpðw;α;σ2Þ
pðtÞ : ð2Þ

Then, given a new test points xn, predictions are made for the corre-
sponding target tn, in terms of the predictive distribution:

pðtnjtÞ ¼
Z

pðtnjw;α;σ2Þpðw;α;σ2jtÞ dw dα dσ2 ð3Þ

We cant compute the posterior pðw;α;σ2jtÞ in (1) directly. Instead, we
decompose the posterior as:

pðw;α;σ2jtÞ ¼ pðwjt;α;σ2Þpðα;σ2jtÞ:
The posterior distribution over the weights is thus given by:

pðwjt;α;σ2Þ ¼ pðw;α;σ2jtÞ
pðα;σ2jtÞ ¼ pðtjw;σ2ÞpðwjαÞ

pðtjα;σ2Þ ¼ pðtjw;σ2ÞpðwjαÞR
pðtjw;σ2ÞpðwjαÞ dw

¼ ð2πÞ�Nþ1
2

Σ
�� ���ð1=2Þ

nexp �ðw�μÞTΣ �1ðw�μÞ
2

()
;

where the posterior covariance and the mean are respectively:

μ¼ σ�2ΣΦT t;

Σ ¼ ðAþσ�2ΦTΦÞ�1;

A¼ diagðα0;α1;…;αNÞ:
By integrating the weights, we obtain the marginal likelihood for the
hyper parameter:

pðtjα;σ2Þ ¼ ð2πÞ�ðN=2Þ Ω
�� ���ð1=2Þexp �tTΩ�1t

2

()
; ð4Þ

where Ω¼ σ2IþΦA�1ΦT . Our goal is now to maximize (4) with
respect to the hyper parameters α;σ2. We simply set the required
derivatives of the marginal likelihood to zero and obtain the following
re-estimation equations:

αnew
i ¼ γi

μ2
i

;

ðσ2Þnew ¼ Jt�ΦμJ2

N�PN
i ¼ 0 γi

;

γi ¼ 1�αi

X
ii

:

J. Lou et al. / Neurocomputing 186 (2016) 66–73 67

Download English Version:

https://daneshyari.com/en/article/408413

Download Persian Version:

https://daneshyari.com/article/408413

Daneshyari.com

https://daneshyari.com/en/article/408413
https://daneshyari.com/article/408413
https://daneshyari.com

