
An optimized second order stochastic learning algorithm
for neural network training

Shan Sung Liew a,n, Mohamed Khalil-Hani a, Rabia Bakhteri b

a VeCAD Research Laboratory, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
b Machine Learning Developer Group, Sightline Innovation, #202, 435 Ellice Ave, Winnipeg, Canada, MB R3B 1Y6

a r t i c l e i n f o

Article history:
Received 11 October 2015
Received in revised form
14 December 2015
Accepted 21 December 2015
Communicated by Jun Yu
Available online 7 January 2016

Keywords:
Stochastic diagonal Levenberg–Marquardt
Fast convergence
Hyperparameter overfitting
Computational efficiency
Distributed machine learning
Convolutional neural network

a b s t r a c t

This paper proposes an improved stochastic second order learning algorithm for supervised neural net-
work training. The proposed algorithm, named bounded stochastic diagonal Levenberg–Marquardt (B-
SDLM), utilizes both gradient and curvature information to achieve fast convergence while requiring only
minimal computational overhead than the stochastic gradient descent (SGD) method. B-SDLM has only a
single hyperparameter as opposed to most other learning algorithms that suffer from the hyperparameter
overfitting problem due to having more hyperparameters to be tuned. Experiments using the multilayer
perceptron (MLP) and convolutional neural network (CNN) models have shown that B-SDLM outperforms
other learning algorithms with regard to the classification accuracies and computational efficiency (about
5.3% faster than SGD on the mnist-rot-bg-img database). It can classify all testing samples correctly on the
face recognition case study based on AR Purdue database. In addition, experiments on handwritten digit
classification case studies show that significant improvements of 19.6% on MNIST database and 17.5% on
mnist-rot-bg-img database can be achieved in terms of the testing misclassification error rates (MCRs). The
computationally expensive Hessian calculations are kept to a minimum by using just 0.05% of the training
samples in its estimation or updating the learning rates once per two training epochs, while maintaining or
even achieving lower testing MCRs. It is also shown that B-SDLM works well in the mini-batch learning
mode, and we are able to achieve 3:32� performance speedup when deploying the proposed algorithm in
a distributed learning environment with a quad-core processor.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning is a form of artificial intelligence that possesses
the ability to learn from data. This usually comprises two main
components: a parameterized and learnable model (e.g. neural net-
work (NN)), and its corresponding learning algorithm. The structure
of the model is often designed to provide nonlinear behavior, which
is essential in performing classification or prediction.

Regardless of how good the learning capacity of a model is, its
learning performance is still highly dependent on the effectiveness
of the learning algorithm. A learning algorithm defines how the
model can make use of the underlying information within the
data, and learns from its statistics. In general, there are three main
types of learning: unsupervised, semi-supervised, and supervised.
Unsupervised learning aims to learn from the unlabeled data,

which is often based on the probability of occurrence for data
patterns. Semi-supervised learning utilizes small subset of the
unlabeled data to pre-train the model. This provides a good
intuition of the hidden structure of data before proceeding to
training using the labeled data. Supervised learning infers a
function by learning from input–output pairs of training samples
[1]. The training is guided by the ground truth labels to tune the
parameters. This paper focuses on the development of supervised
learning algorithm for NN models.

Most learning algorithms are based on iterative methods. Given
a parameterized model represented by a function, a learning
algorithm aims to find a set of parameters that lead to an optimum
solution for the function. In this context, the function refers to an
NN with an error or loss function, the parameters are its weights
and biases, and the solution is the state where the NN is deemed
to have learned well. This is done by finding the suitable step sizes
for these parameters (weights), and taking steps iteratively
towards the direction until it reaches a desired solution:

Wtþ1 ¼Wt�ΔW ð1Þ

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.12.076
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ60 168588653.
E-mail addresses: ssliew2@live.utm.my (S.S. Liew),

khalil@fke.utm.my (M. Khalil-Hani),
rbakhteri@sightlineinnovation.com (R. Bakhteri).

Neurocomputing 186 (2016) 74–89

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.12.076
http://dx.doi.org/10.1016/j.neucom.2015.12.076
http://dx.doi.org/10.1016/j.neucom.2015.12.076
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.076&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.076&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.12.076&domain=pdf
mailto:ssliew2@live.utm.my
mailto:khalil@fke.utm.my
mailto:rbakhteri@sightlineinnovation.com
http://dx.doi.org/10.1016/j.neucom.2015.12.076


where Wt and Wtþ1 are the weights at the tth and tþ1ð Þth
iterations respectively, and ΔW represents the optimal step sizes
to be taken. The main objective is to find the best ΔW such that it
reaches the solution in shortest number of iterations. In NN
models, ΔW is usually computed by finding the error gradients of
a loss function with respect to the weights, which can be done
using the back-propagation algorithm.

Gradient descent is a first order learning algorithmwhich is most
widely used in the NN training. The algorithm is simple, but often
suffers from very slow convergence. Many other learning algorithms
have been proposed to improve the learning convergence rate by
utilizing both gradient and curvature information, or through adap-
tive mechanisms based on the current training status. As a result,
these algorithms are able to produce a better learning curve, but with
the expense of additional computations, which can be prohibitive to
compute for larger and deeper neural network models. This suggests
the necessity to develop a learning algorithm that can converge fast
while requiring minimal computational overhead.

An additional issue with most of these complex learning algo-
rithms is that they have more hyperparameters than the conven-
tional first order learning algorithms. The problem that can arise is
hyperparameter overfitting [2], in which there are endless ways of
configuring the learning algorithm, and this may end up selecting a
combination of values that outperforms others purely by chance.

In this paper, we propose a second order learning algorithm,
called the bounded stochastic diagonal Levenberg–Marquardt
algorithm, B-SDLM for short. The proposed algorithm is an
improved version of the original SDLM algorithm, which was first
proposed by LeCun et al. as a fast and efficient method to train
convolutional neural networks (CNNs) [3]. The key contributions
of the proposed algorithm include:

1. B-SDLM encourages fast network convergence due to utilizations
of both gradient and curvature information, while ensuring its
learning stability through an additional boundary condition;

2. B-SDLM alleviates the problematic hyperparameter overfitting
issue by having only a single hyperparameter to be tuned
instead of many hyperparameters typically required in existing
complex learning algorithms; and

3. compared to the conventional SGD algorithm, the computa-
tional overhead in B-SDLM is negligible, since it requires only a
very small portion of training samples for Hessian estimation.

It should be noted here that, to our knowledge, this work is
among the first attempts to run a stochastic second order learning
algorithm in the mini-batch learning mode to realize parallel
computation. Our experimental results also show the viability of
executing a second order learning algorithm in a distributed
machine learning environment to gain computation speedup.

The paper is organized as follows. Section 2 covers common
learning algorithms for supervised neural network training. Sec-
tion 3 presents the proposed algorithm. Section 4 describes the
experimental design to verify the performance of the proposed
algorithm. Section 5 presents the results and discussions on B-
SDLM from various perspectives. The final section concludes the
work and suggests possible future work.

2. Theoretical background: learning algorithms

Gradient descent (GD) is the most common first order opti-
mization method to train NNs on supervised mode [4]. Also
known as “steepest descent”, the idea in GD is to take steps pro-
portional to the negative gradient of the loss function E Wð Þ at
current point t to find the local minimum (possible solution) of the

function:

Wtþ1 ¼Wt�η
dE Wtð Þ
dWt

ð2Þ

where Wt and Wtþ1 are the weights at the tth and tþ1ð Þth
iterations respectively, E Wtð Þ is the loss function, η is the learning
rate which controls the steps to which a problem approaches its
solution(s), and dE Wtð Þ

dWt
is the error gradient that is computed

through the back-propagation (BP) algorithm.
Conventional GD works in batch learning mode, hence the term

batch GD (BGD). BGD works by summing the error gradients of all
samples in training data. These gradients are then averaged to be
used in updating the weights. BGD is simple and can be easily
parallelized. However, its convergence towards an optimal solution
is very slow. Certain important patterns of some training samples
may not be well observed due to the gradient averaging. BGD can
also be computationally intractable when dealing with large data.

Stochastic GD (SGD), on the other hand, performs weight
update when each sample is presented to the NN. The learning
curve may not be as smooth as in BGD due to the noisy updates,
but it tends to reach convergence faster due to better chance of
avoiding local minima [5]. However, for ill-conditioned problems
(i.e. small errors near inputs can result in large errors near out-
puts), SGD can suffer from slow convergence near a local mini-
mum. Nevertheless, SGD is, by far, the most common supervised
learning algorithm used in NN training, and is applied in con-
junction with the BP algorithm [6–8].

In NN training, the speed of learning is also highly affected by
the value of the learning rate chosen. A learning rate dictates mainly
the step sizes to be taken to reach an optimal solution. However, a
fixed learning rate may not be suitable for all problems, since its
value depends heavily on the condition of error surface and current
search location of the weight space. Consequently, adaptive learning
rate schemes have been proposed to find a suitable learning rate
that accelerates the training speed. These schemes improve on the
first order learning algorithms, and they can be categorized into two
types: global and local adaptive algorithms.

2.1. Global adaptive algorithms

Global adaptive algorithms attempt to make use of the training
state to adjust the global learning rate (a learning rate applied to
all weight updates). For instance, the learning rate can be manu-
ally reduced after certain training iteration [9], but questions of
when to reduce and to what value must be considered carefully.
Another approach is to decay the learning rate over time based on
a fixed schedule (annealing) [9]. The learning rate can also be
decreased once the training process reaches a plateau, but with
the expense of more hyperparameters.

All the aforementioned methods apply the same learning rate
to all weights, which can be inappropriate. Each weight may
require different step sizes to be optimally tuned. Table 1 (due to
[9]) summarizes some of the global learning rate schedules: where
η0 is the initial global learning rate, ηt is the global learning rate at
the tth iteration, M is usually set as total training samples, and c
controls the magnitude.

Other algorithms utilize the difference of total errors between
the current and previous training iterations to tune the learning
rate. A notable example is the bold driver technique, where the
learning rate is increased by a small proportion if the error
decreases, or decreasing it and canceling the last weight changes
whenever an increased error is observed [10,11]. However, it can
only be applied in the batch learning mode and requires two
additional hyperparameters.

S.S. Liew et al. / Neurocomputing 186 (2016) 74–89 75



Download English Version:

https://daneshyari.com/en/article/408414

Download Persian Version:

https://daneshyari.com/article/408414

Daneshyari.com

https://daneshyari.com/en/article/408414
https://daneshyari.com/article/408414
https://daneshyari.com

