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a b s t r a c t

In this paper, we combine decentralized adaptive control with the fractional-order techniques to
investigate the synchronization of fractional-order complex-variable dynamical networks. A new lemma
is proposed for estimating the Caputo fractional derivatives of Hermitian quadrtic Lyapunov functions.
Based on local information among neighboring nodes, an effective fractional-order decentralized adap-
tive strategy to tune the coupling gains among network nodes is designed. This analysis is further
extended to the case where only a small fraction of coupling gains are choosen to be adjusted. By con-
structing suitable Lyapunov functions and utilizing the proposed lemma, two sufficient criteria are
derived to guarantee the network synchronization by using the proposed adaptive laws. Finally,
numerical examples are given to validate the theoretical results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that numerous natural and man-made systems
can be modeled as complex dynamical networks. Examples include
social networks, food webs, epidemic spreading networks, biological
networks, scientific citation networks, Internet networks, World Wide
Web, electric power grids, and so on [1,2]. In recent years, extensive
efforts have been made to understand and study the topology and
dynamics of complex networks. Particularly, as a typical collective
behavior of complex networks, synchronization has received
increasing attention due to its potential applications in many real
scenarios [3]. So far, many systematic results on different synchroni-
zation patterns, such as complete synchronization, lag synchroniza-
tion, generalized synchronization, cluster synchronization, etc., have
been obtained for many kinds of complex networks (see Refs. [4–9]
and relevant references therein).

However, all the above results on synchronization mainly con-
centrated on integer-order and real-variable dynamical networks. It
has been recognized that the real objects are generally fractional and
fractional calculus allows us to describe and model a real object more
accurately than the classical integer-order methods. Not surprisingly,
the dynamics and control problem of fractional-order systems has
attracted increasing attention from various fields [10–14]. Particularly,

synchronization in fractional-order complex dynamical networks [15–
18] has currently become an interesting and open problem.

On the other hand, there are a lot of physical systems involving
complex-variables, which can be modeled by complex-variable
dynamical systems or complex-variable dynamical networks. For
example, the complex-variable Lorenz system has been introduced
to describe and simulate detuned laser and rotating fluids [19].
After the complex Lorenz model, many other complex-variable
dynamical systems have been proposed, such as complex non-
linear oscillators [20], complex dynamos system [21], many kinds
of chaotic systems with complex-variable [21–25], etc. In recent
years, the synchronization and control problem of complex-
variable chaotic systems [21–25] and complex-variable dynami-
cal networks [26–30] has been extensively investigated, and some
well-known results have been obtained. Among them, some new
kinds of synchronization for complex-variable dynamical systems
and networks, such as complex complete synchronization [24],
complex projective synchronization [22,26,29,30], complex mod-
ified projective synchronization [25], etc., have been widely
investigated due to their potential applications in secure com-
munication. Further, in Ref. [31–33], the authors investigated the
chaotic phenomena and synchronization in the newly proposed
fractional-order complex Lorenz system, fractional-order complex
Chen system, and fractional-order complex T system. However, the
synchronization of fractional-order complex-variable dynamical
networks has not yet been investigated. From a control perspec-
tive, the aim here is to find some appropriate controllers such that
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the controlled fractional-order complex-variable dynamical net-
works are synchronized.

In nature and technology, some consensus phenomena have
been reported, which are based on the nearest-neighbor interac-
tion rules. Examples include flocking, the rendezvous problem,
multi-vehicle cooperative control, and so on [34]. Motivated by
this, decentralized adaptive control has been proposed for inter-
connected systems [35]. Recently, the decentralized adaptive
strategies have been proposed to tune the coupling gains so as to
guarantee synchronization in diffusively coupled complex net-
works, see (Refs. [34,36–39]). To our knowledge, the decentralized
adaptive strategies can be also used to tune the gains of feedback
controllers. However, adding one more control to network nodes is
redundant and too expensive, since a diffusively coupled complex
network could be synchronized by designing suitable coupling
gains among the network nodes. Compared with the centralized
adaptive strategies developed in Refs. [40,41], the coupling gains
are adapted based on local information exchanged among neigh-
boring nodes. It should be noted that the obtained results for
integer-order real-variable dynamical systems cannot be applied
directly to fractional-order complex-variable dynamical systems.
Therefore, it is important and interesting to investigate the syn-
chronization of fractional-order complex-variable dynamical net-
works by using the decentralized adaptive strategies.

As is known to all, Lyapunov direct method is a standard tool to
derive the synchronization criteria for integer-order complex
networks. Nevertheless, the fractional Lyapunov direct method
proposed in Ref. [42] is not as popular as integer-order Lyapunov
direct method. It is difficult to calculate the fractional derivative of
a composite Lyapunov function, because fractional derivatives of
non-integer orders cannot satisfy the Leibniz rule for integer-order
derivative [43], and the fractional Leibniz rule includes higher
order integer and fractional derivatives of the states of the system
[43]. Quite recently, Aguila-Camacho et al. [44] and Duarte-
Mermoud et al. [45] introduce two lemmas for estimating the
Caputo fractional derivative of a quadratic function. Thus, one can
derive the synchronization conditions for fractional-order real-
variable dynamical networks by using quadratic Lyapunov func-
tions like the classic Lyapunov direct method. However, general
quadratic Lyapunov functions are not valid for complex-variable
dynamical systems, and Hermitian quadratic form must be used
instead. Therefore, in this paper, we present a new lemma for
estimating the Caputo fractional derivative of a Hermitian quad-
ratic Lyapunov function. Then, we combine decentralized adaptive
control on coupling gains with fractional-order inequality techni-
ques to synchronize the fractional-order complex-variable dyna-
mical networks with diffusive coupling.

The remaining of this paper is organized as follows. In Section 2,
some necessary preliminaries and the model of fractional-order
complex-variable networks are given. The main results of this paper
are given in Section 3. In Section 4, numerical examples are pro-
vided to validate the theoretical results. Finally, some conclusions
are presented in Section 5.

Notions: The standard mathematical notations will be used
throughout this paper. Let R¼ �1; þ1ð Þ, Rn Cn� �

be the
n-dimensional Euclidean space(unitary space) and Rm�n Cm�n� �

be
the space of m� n real(complex) matrices. xT ðBT Þ denotes the
transpose of vector x (matrix B). For any xACðorxACnÞ, x denotes
the conjugate of x. xH denotes conjugate transpose of x, ‖x‖¼

ffiffiffiffiffiffiffiffi
xHx

p

denotes the norm of x. A square matrix AACn�n is Hermitian if
A¼ AH . λmin Uð Þ λmaxðU Þ

� �
denotes the minimum (maximum)

eigenvalue of the corresponding matrix. Let x¼ xrþ jxi, where j¼ffiffiffiffiffiffiffiffi
�1

p
; xr and xi are the real and imaginary parts respectively.

2. Preliminaries and model

2.1. Fractional calculus and properties [10]

Definition 1. The uniform formula of a fractional integral with 0
oαo1 is given by

Iαt f ðtÞ ¼
1

ΓðαÞ
Z t

t0

f ðτÞ
ðt�τÞ1�αdτ; ð1Þ

where tZt0; f ðtÞ is an arbitrary integrable function, Iαt is the
fractional integral operator, Γ ∙ð Þ is the gamma function.

Definition 2. The Caputo fractional derivative with fractional-
order 0oαo1can be expressed as

Dα
t f ðtÞ ¼

1
Γ 1�αð Þ

Z t

t0

1
t�τð Þα

df ðτÞ
dτ

dτ; ð2Þ

where tZt0; Dα
t is the Caputo fractional derivative operator.

Throughout this paper, we consider the Caputo definition in our
fractional-order network model, since the initial conditions for the
fractional-order differential equations with the Caputo derivatives
take the same form as for the integer-order ones, which have clear
physical meanings [10]. In the following, unless otherwise stated,
we consider αA 0;1ð Þ.

Let us pay attention to the following properties of the fractional
derivatives, which are most commonly used in applications.

Property 1.

Dα
t ax tð Þþby tð Þð Þ ¼ aDα

t x tð ÞþbDα
t y tð Þ: ð3Þ

Property 2.

Dα
t f tð Þ ¼ I1�α _f tð Þ ð4Þ

Property 3.

Iαt D
α
t f tð Þ ¼ f tð Þ� f t0ð Þ; 8 tZt0 ð5Þ

Property 4. The Caputo fractional derivative of a constant function is
always zero.

Definition 3. A continuous function γ:½0; t�-½0; þ1� is said to
belong to class-K if it is strictly increasing and γ 0ð Þ ¼ 0.

Theorem 1. (Fractional Lyapunov direct method [42]). Let x¼ 0 be
an equilibrium point for the fractional-order nonlinear system
Dα
t x tð Þ ¼ f t; xð Þ. Let V t; xð Þ be a Lyapunov function and γiði¼ 1;2;3Þ be

class-K functions such that

γ1 ‖xkÞrV t; xð Þrγ2 ‖xkÞ;ð� ð6Þ

Dβ
t V t; xð Þr�γ3 ‖xkÞ;ð ð7Þ

where βA 0;1ð Þ. Then, the equilibrium point x¼ 0 is asymptotically
stable.

A new property for Caputo derivative can be stated in Lemma 1,
which can facilitate estimating the fractional derivative of a
common quadratic Lyapunov function.

Lemma 1. [45]. Let x tð ÞARn be a vector of derivable functions. Then,
the following inequality holds

Dα
t xT tð ÞPx tð Þ� �

r2xT tð ÞPDα
t x tð Þ; ð8Þ

where αA 0;1ð Þ; tZt0 and PARn�n is a constant, symmetric and
positive definite matrix.

Q. Xu et al. / Neurocomputing 186 (2016) 119–126120



Download	English	Version:

https://daneshyari.com/en/article/408418

Download	Persian	Version:

https://daneshyari.com/article/408418

Daneshyari.com

https://daneshyari.com/en/article/408418
https://daneshyari.com/article/408418
https://daneshyari.com/

