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a b s t r a c t

This paper is discussed with the problem of passivity based synchronization for a class of complex
dynamical networks (CDNs) consisting uncertain inner coupling matrix together with successive time-
varying delays via a state feedback delayed controller. Due to occurrence of uncertainties in coupling
strengths, the considered CDNs take account of an uncertain inner coupling strength which is more
general than the previously existing inner coupling strengths. Specifically, the uncertainties encountering
in coupling terms are characterized with the aid of interval matrix approach. Also, by introducing a
simple linear transformation, the corresponding error system is formulated. Then, based on the infor-
mation about control delay term, two cases are considered namely, differentiable and non-differentiable.
More precisely, by constructing an appropriate Lyapunov–Krasovskii functional (LKF) containing triple
integral terms in respect of Kronecker product, for both the cases, some sufficient criteria are established
in terms of linear matrix inequalities (LMIs) to guarantee the robust synchronization of the addressed
CDNs based on passivity property. And the established criteria optimistically reduce the L2 gain level
from the disturbance to the output vector. Subsequently, the desired state feedback gain matrix is
designed in terms of the solution to a convex optimization problem. Finally, a numerical example is
presented to demonstrate the effectiveness of the proposed theoretical results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In nature, most of the dynamical systems can be represented in
the form of various complex dynamical networks (CDNs). Gen-
erally, a CDN consists of a very large number of interconnected
nodes in which each node represents some prescribed contents. To
specify, some well-known examples of CDNs are disease trans-
mission networks, social networks, cell metabolisms, food webs,
electricity distribution networks [1,2]. Moreover, CDNs are classi-
fied into different categories such as scale free networks [3], ran-
dom networks [4] and small world networks [5]. It should be
pointed out that since the dynamics of CDNs are coupled with
topological evolution, the qualitative analysis on their dynamical
behaviors is more challenging and interesting issue compared to
single dynamic systems. Because of this fact, research commu-
nities have eagerly concentrated on the study of CDNs and have
reported some delightful results on CDNs in the literature, see for
example [6–8].

On the other hand, some researchers have paid their great
attention to investigate the various dynamical behaviors of CDNs
such as self-organization, synchronization, spatio-temporal chaos,
auto-waves, and spiral waves, see [9–11]. Among them synchroni-
zation has become the fascinating dynamical behavior of CDNs and
has been widely discussed in the literature [12–14]. As is well-
known, synchronization is the process between two or more
dynamical systems to attain a common behavior by tuning some
prescribed properties of their motion [15]. In order to do this, the
node in CDNs needs to exchange its own information with its
neighbors. Meanwhile, during the process of synchronization, the
connections among the nodes are very critical. Therefore, the syn-
chronization analysis mainly concentrates on nodes connections
and topological structure of the CDNs. In this relation, diverse kinds
of synchronization have been proposed by the control communities
including exponential synchronization [16], projective lag syn-
chronization [17] and cluster synchronization [18]. After that, few of
the researchers have employed various control methods such as
pinning control [19], sampled-data control [20] and adaptive con-
trol [21] to achieve synchronization in CDNs.

It is obvious that time delay naturally exists in all kinds of
dynamical systems. Moreover, in practice, it is also a main reason
to affect the stability and the performances of dynamical systems.
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Therefore, it is necessary and important to include the concept of
time delay while discussing about the dynamical networks.
Recently, much progress has been achieved in the study of CDNs
with time or time-varying delays, for instance refer [22–24]. Fol-
lowing these seminal works, researchers have begun to investigate
the successive or additive delay components for control systems
which are more general than of single component; see for example
[25–27] and the references therein. Also, it has been showed that
the additive delays gave less conservative results over the single
component [28]. Therefore, we should also pay great attention to
additive time-varying delays which give more important in both
theoretical and practical purposes. Besides, in the existing litera-
ture, it is noticed that most of the works on time-varying delayed
systems have been studied under the assumptions that the range
of time-varying delay is from 0 to a certain upper bound and its
derivative exists which is also bounded. But in practice, the time-
varying delay may belong to any interval which means that the
lower bound needs not to be zero. Moreover, it may not necessa-
rily be differentiable and this phenomenon permits the delay
function to be a fast time-varying function. Took these facts into
account, some of the researchers have reported few fruitful results
in the previous literature, see for instance [29–31]. Hence worth, it
is of great significance to investigate the synchronization of CDNs
with non-differentiable interval time-varying delay.

It should be noted that all the aforementioned works about
CDNs have been concentrated only on known/fixed coupling
strengths. Nevertheless, in some real cases, uncertainties may
encounter in the coupling strength terms due to few environ-
mental disturbances. In the beginning stage, by employing some
coupling adjustment strategies, few authors attempted to address
the issues of existence of nonlinear coupling terms during the
synchronization process in CDNs. After that, very recently, the
concepts of uncertain inner coupling strengths and incomplete
measurements of coupling terms have been introduced. More
precisely, the uncertainties occurred in the coupling terms are
characterized by using interval matrix method. Based on these real
scenarios, very less amount of works only has been reported in the
existing literature [32–34]. However, the issues and the impacts of
uncertain coupling terms in CDNs during synchronization process
have not been fully analyzed in the literature.

On the other hand, passivity is a familiar concept in control theory
that interconnects the system inputs and outputs to the energy
storage function. One of the main advantages of this concept is that it
has the ability to maintain the system stability internally. Due to this
peculiar property, passivity theory has been successfully employed in
analysis and synthesis of nonlinear control systems [35,36]. Since a
dynamical network is composed of a number of nodes that are
nonlinear systems, it is natural and reasonable to expect passivity to
be more helpful during network analysis and design. The key idea
behind the passivity property for achieving synchronization is that it
enlarges the possibility of synchronizability even if all the provided
outer coupling topology cannot bring synchronization. Concerning
these facts, there has been grown considerable researches in pas-
sivity analysis and passive control for a variety of dynamical systems
[37–40] during the past three decades. Very recently, the problem of
passivity based synchronization for CDNs has been addressed [41,42].
From the above discussions, it is clear that so far in the existing lit-
erature, very little attention has been paid on the problem of pas-
sivity based synchronization for CDNs. Moreover, to the best of
authors' knowledge, very few researchers have discussed the syn-
chronization of CDNs with uncertain inner coupling matrices. Espe-
cially, the passivity based synchronization of CDNs with uncertain
inner coupling matrices has not yet been investigated which stimu-
lates us to do the present study.

Motivated by these observations, this paper is devoted to
investigate the passivity based synchronization for a class of CDNs

with uncertain inner coupling strength and two additive delay
components. And the main contributions of this paper can be
summarized as follows:

� Inspired by the works [33,34], an uncertain inner coupling term
is considered to a family of CDNs with two additive delays and
external disturbance after that the passivity performance is
studied for the CDNs.

� By utilizing the full information of delays' bounds, a new set of
Lyapunov–Krasovskii functional is constructed and then the
passivity based synchronization criteria are derived for the pro-
posed CDNs according to the information of control delay term.

� Based on the proposed criteria, two control algorithms for the
state feedback delayed controller are developed and they sig-
nificantly minimize the L2 gain level γ40.

Finally, the proposed theoretical results are validated through by a
numerical example and its simulations.

The rest of this paper is arranged as follows: Section 2 presents
the problem formulation and some necessary preliminaries which
are needed for the proof of the main results. Synchronization
criteria for the undertaken CDNs are derived and the corre-
sponding control gain is obtained in Section 3. Numerical simu-
lations are provided to verify the theoretical results in Section 4
which is followed by the conclusion in Section 5.

Notations: The following notations are used throughout this
paper. Rn and Rp�q, respectively, denote the n dimensional Eucli-
dean space and the space of all p� q matrices. The notation A40
(respectively, Ao0), for AARn�n means that the matrix A is real
symmetric positive definite (respectively, negative definite). The
superscript T stands for matrix transposition. I denotes the identity
matrix with compatible dimension. The Kronecker product of
matrices AARl�n and BARp�q is a matrix in Rlp�nq and denoted as
ðA � BÞ. L2½0;1Þ represents the space of square integrable vector
functions over ½0;1Þ. Moreover, the asterisk n in a matrix is used to
denote term that is induced by symmetry. Matrices, if they are not
explicitly specified, are assumed to have compatible dimensions.

2. Problem formulation and preliminaries

In this paper, we consider a class of complex dynamical net-
works (CDNs) consisting of N identical nodes with uncertain inner
coupling and additive time-varying delays. Then the correspond-
ing ith node of CDNs is governed by the following differential
equations:

_xiðtÞ ¼ f ðxiðtÞÞþ
XN
j ¼ 1

gijAxjðtÞþ
XN
j ¼ 1

gijBxjðt�δ1ðtÞ�δ2ðtÞÞþuiðtÞþwiðtÞ;

ziðtÞ ¼ CxiðtÞ; i¼ 1;2;…;N;

9>>=
>>;
ð1Þ

where xiðtÞARn is the state vector of ith node; f ðxiðtÞÞ represents a
vector-valued nonlinear function; uiðtÞARm is the control input of
ith node; wi(t) is the network external disturbance which belongs
to L2½0;1Þ; ziðtÞARp is the output of ith node; A¼ diagf
a1; a2;…; ang40 and B¼ diagfb1; b2;…; bng40 denote the inner
coupling matrices of the network; C is a known constant matrix
with appropriate dimension; δ1ðtÞ and δ2ðtÞ are the additive delay
components. Let G¼ ½gij�N�N be the outer-coupling matrix repre-
senting the topological structure of the network, in which gij is
defined as follows: if there is a connection between node i and
node j ðja iÞ, then gij40; otherwise gij ¼ 0 and the diagonal
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