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This paper studies the problem of adaptive neural output feedback controller design for a class of
uncertain switched stochastic nonlinear systems in strict-feedback form. In the design procedure, a
common coordinate transformation for all subsystems is constructed to overcome the design difficulty
caused by adoption of different coordinate transformation for different subsystems. Then, by using
switched state observer to estimate the unmeasured states and different update laws for different
subsystems, a novel neural output-feedback controller is designed via backstepping approach. Further-
more, based on the Lyapunov method and the average dwell time condition, the stability of the resulting
closed-loop system can be achieved. It is shown that all the signals of the closed-loop system are
bounded under a class of switching signals with average dwell time. Finally, simulation results are
included for validating the advantages of the proposed approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Switched systems, which consist of a finite number of dyna-
mical subsystems together with a switching rule that determines
the switching among them, have received a great deal of attention
by their strong engineering background in various areas [1], such
as mechanical systems, chemical engineering processing, con-
strained robotics, just to name a few. It is well known that how to
design appropriate switching laws to stabilize the switched system
is one of the most interesting and serious challenges for switched
systems.

On the other hand, stochastic disturbance often exists in
practical systems and is a source of instability of control systems.
Therefore, the investigation on stochastic nonlinear systems has
received much attention in the control community in recent years
[2-5]. Particularly, approximation-based adaptive fuzzy or neural
backstepping controllers have become one of the most popular
design approaches to a large class of uncertain nonlinear systems,
and some interesting results have been reported in [6-24]. How-
ever, the abovementioned results focus on the control problem of
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nonswitched stochastic systems and less attention has been paid
to the control problem of switched stochastic systems.

To solve this problem, significant research efforts have been
devoted to the problems of analysis and synthesis for switched
stochastic systems. For example, [25] solved the problems of dis-
sipativity analysis and sliding mode control (SMC) for a class of
continuous-time switched stochastic systems based on the average
dwell time approach and the piecewise Lyapunov function techni-
que. By using a supplementary variable technique and a plant
transformation, the state estimation and sliding mode control pro-
blems for phase-type semi-Markovian jump systems were studied
in [26]. In [27], the problem of SMC of Markovian jump singular
time-delay systems was investigated with bounded £, gain perfor-
mance. In [28], the problems of stochastic stability and sliding mode
control for a class of linear continuous-time systems with stochastic
jumps were considered. In [29], a class of nonlinear uncertain sto-
chastic systems with Markovian switching was studied based on the
SMC method. All the aforementioned control approaches, however,
focus on the linear systems with matched uncertainty satisfying
linear growth. As a matter of fact, this assumption does not hold in
many practical systems. To overcome this difficulty, the back-
stepping control approach of stochastic nonlinear systems with
Markovian switching was studied in [30,31]. Recently, the authors in
[32] proposed a state feedback control scheme for switched sto-
chastic nonlinear systems in strict-feedback form under arbitrary
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switchings based on the assumption that all system nonlinearities
are known. However, this assumption is usually unrealistic in
practice. In fact, many complex system dynamics in real world are
too difficult to be explicitly formulated. In such case, the results in
[30,31] and [32] are not directly applicable.

The recent literature on controller synthesis has devoted to the
research of the adaptive control of switched nonlinear systems,
and different approaches have been proposed based on the
assumption that the system states are measured directly [33-35].
The aforementioned results in [33-35], however, required that the
states of nonlinear systems were available for measurement. In
practice, state variables are often unmeasurable for many non-
linear systems, which makes the aforementioned state feedback
control algorithms invalid. Therefore, a new approximation-based
adaptive control approach will be required for switched uncertain
stochastic nonlinear systems without the measurements of the
system states. However, to the best of our knowledge, there is not
a publication when the states of systems are not measured and the
nonlinear functions are unknown in output feedback for switched
uncertain stochastic systems. Therefore, research in this area will
be of both theoretical and practical importance, and it is the aim of
this research.

Motivated by these observations, this paper studies the pro-
blem of adaptive output feedback neural tracking control for a
class of switched uncertain stochastic nonlinear systems. A swit-
ched state observer is designed to estimate the unmeasurable
state variables. By combining the adaptive backstepping technique
with RBF neural networks' universal approximation capability, the
adaptive neural output feedback control scheme is proposed. Also,
in order to avoid different coordinate transformations for sub-
systems, a common basis function vector for different subsystems
at each step of backstepping is chosen. The main contributions of
this paper are summarized as follows.

(1) Unlike the existing result of switched stochastic nonlinear
systems in [32], where all system functions are known and the
states of the system are measurable directly, the system functions
and the system states are unknown. By using a switched observer
to estimate the unmeasurable system states and the NN to
approximate the unknown and desired control input signals
directly, a novel neural output feedback controller is designed by
exploring the backstepping and the average dwell time for the
first time.

(2) A switched observer is designed to estimate the unmea-
surable system states, hence, the conservativeness caused by
adoption of a common observer for all subsystems is reduced.
Meanwhile, a common coordinate transformation for different
subsystems at each step of backstepping is designed to avoid dif-
ferent coordinate transformations for subsystems.

(3) Since the exponential decline property of Lyapunov func-
tions for individual subsystems is no longer assumed in this paper,
the classical average dwell time method in [37] cannot be directly
applied to handle the adaptive neural output-feedback control
problem of switched uncertain stochastic nonlinear systems. To
solve this problem, we improve the classical average dwell time
method. Also, we simultaneously construct the adaptive output-
feedback controllers of subsystems and give a class of switching
signals with average dwell time.

(4) By using direct adaptive NN control method, the proposed
controller for each subsystem contains only one adaptive para-
meter that needs to be updated online, which is not related to the
numbers of the system states and the NN nodes used in the NN.
Therefore, the computation burden is significantly reduced.

Notation: Throughout the paper, the following notations are
used, R" denotes the n-dimensional Euclidean space and | - |l
represents Euclidean norm of vectors or matrices. R, denotes the
set of all nonnegative real numbers. I stands for the identity matrix

with an appropriate dimension. AT represents the transpose of
matrix A. P> 0 means that P is a positive-definite matrix with an
appropriate dimension.

2. Preliminaries and problem formulation

In this section, the definition of stochastic switched systems
and some useful preliminaries are first presented in Section 2.1,
and then Section 2.2 introduces the definition of radial basis
function NN, and then the problem formulation is presented in
Section 2.3.

2.1. Mathematical preliminaries

Consider a family of stochastic nonlinear systems described by

dx :fk(x) dt+gk(X) d(U, keM (])

where M ={1,2,...,m}, xeR" is the state of the system, w is an r-
dimensional independent standard Brownian motion defined on
the complete probability space (£2, F, F;, P) with £2 being a sample
space, F a o-field, {F;};- ¢ a filtration and P a probability measure,
and f;(-) and g,(-) are locally Lipschitz functions in x and satisfy
fi(0)=0 and g (0)=0, respectively, which means that the kth
system has a local solution. In addition, we assume that the state
of the system (1) does not jump at the switching instants, i.e., the
solution is everywhere continuous [34-36].

In the following, the definition of average dwell time will be
given, which plays a key role in the present paper.

Definition 1 (Hespanha and Morse [37]). For any T>t>0,
denoting N,(T,t) is the number of switching of o(t) occurring in
the interval [t, T), if there exist numbers Ny > 0,7, > 0 such that

(T-t
T

a

No(T,t) < No+

2

then 7, is called average dwell time.

Let T>0 be an arbitrary time. Denote by ty,...,tn, 0 the
switching times on the interval (0,T) (by convention, to =0). A
time-dependent switching rule is given by

O'(t)ij, te(tj,thr]), j=0,1,...,Ng(T,0) (3)

that is, the k; th subsystem is active. Also, we assume k; # k; , 1 for
all j.

Assumption 1 (Wu et al. [38]). The preliminary assumption about
switch is that switching instants ¢; are stopping times and the
corresponding active system has a unique solution in the interval
[t tj+1)-

Therefore, the switched system generated by family (1) and
switching signal (3) can be presented nominally as

dx :fo'(x) df—i—g(,(X) dCU, vxeR" (4)

The following result shows the existence of the unique solution
under local Lipschitz condition.

Lemma 1. System (4) has a unique solution X(tg,xo:t) on the
maximal existence interval (0, T). When T = oo, the solution is global.

Proof. The functions fi(x) and gi(x) are locally Lipschitz functions
in x and satisfy f,(0) =0 and g,(0) = 0, respectively, which means
that the kth system has a local solution. Next, follow the same
steps as in [38], system (4) has a unique solution x(tg,Xg : t) on
the maximal existence interval (0, T). When T = co we say that the
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