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1. Introduction

Lyapunov stability is one of the important properties of dynamic
systems. From a system-theoretic point of view, the global stability of
neural networks is a very interesting issue for research because of the
special nonlinear structure of neural networks. From a dynamical
system point of view, globally stable neural networks in Lyapunov
sense are monostable systems, which have a unique equilibrium
attracting all trajectories asymptotically, more specific results are
referred to [1-10,16-18]. In many other applications, however,
monostable neural networks have been found to be computationally
restrictive and multistable dynamics are essential to deal with the
important neural computations desired. In these circumstances, neural
networks are no longer globally stable and more appropriate notions of
stability are need to deal with multistable systems. In this context,
many researchers focus on the Lagrange stability. It is noted that unlike
Lyapunov stability, Lagrange stability refers to the stability of the total
system, not the stability of the equilibriums, because the Lagrange
stability is considered on the basis of the boundedness of solutions and
the existence of global attractive sets (see [11-15,19-21]). We also note
that Lagrange stability has attracted phenomenal worldwide attention.
In [11,12], Liao et al. apply Lyapunov functions to study Lagrange
stability for recurrent neural networks. In [13], Yang and Cao consider
stability in Lagrange sense of a class of feedback neural networks for
optimization problems. In [14,15], Lagrange stability is discussed for
Cohen-Grossberg neural networks. At present, although a series of
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results for periodic neural networks are obtained (see [1-10,16-18]),
the stability analysis in the Lagrange sense for periodic neural networks
does not appear. So from the theoretical and application views, it is
necessary to study the stable properties in the Lagrange sense for
periodic neural networks.

Moreover, in conducting stability analysis of a neural network,
the conditions to be imposed on the neural network are determined
by the characteristics of activation function as well as network
parameters. As we know, when neural networks are designed for
problem solving, it is desirable for their activation functions to be
general. To facilitate the design of neural networks, it is important
that the neural networks with general activation functions are
studied. The generalization of activation functions will provide a
wider scope for neural network designs and applications. Motivated
by the above discussions, our objective in this paper is to study the
global exponential stability (GES) in Lagrange sense for periodic
neural networks with various activation functions, which include
both bounded and unbounded activation functions. We provide
verifiable criteria for the boundedness of the networks and the
existence of globally exponentially attractive (GEA) sets by con-
structing appropriate Lyapunov-like functions. It is believed that the
results are significant and useful for the design and applications of
the periodic neural networks.

This paper is organized as follows. In Section 2, we define the
notions of GEA sets and GES in Lagrange sense, and give two
preliminary results that will be used in the proofs of the main results.
In Section 3, we provide several sufficient conditions for the GES in
Lagrange sense of periodic neural networks with bounded activation
functions. GES in Lagrange sense of Lurie-type activation functions is
studied in Section 4. In Section 5, a numerical example is given to

0925-2312/$ - see front matter Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2010.11.016


www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.016
mailto:alequ@126.com
mailto:zgzeng@gmail.com
dx.doi.org/10.1016/j.neucom.2010.11.016

832 A. Wu et al. / Neurocomputing 74 (2011) 831-837

illustrate the applications of the results. Finally, in Section 6 we give
the conclusion.

2. Preliminaries
Consider the following neural network model of the form:

Xi(t) = —di(Ox; () + > _(a5(Og(X;(t) +by(Og X (t—T)) +Li(t), t=0,
=

M

where i=1,2,...,n, di(t) >0, x;(t) is the state variable of the ith
neuron, [i(t)e C(R,R) is an external input, ag;(t) and by(t) are
connection weights from neuron i to neuron j, t; corresponds to
the transmission delay and satisfies 0 <t; <t (7 is a constant),
gi(-) e C(R,R) is the neuron activation function, the initial conditions
associated with (1) is of the form x;(s) = y;(s) for s e [-7,0].

Throughout the paper, we assume that d;(t), a;(t), b;(t) and
I;(t) are continuous w-—periodic functions, i.e., d;(t+w)=d;(t),

In this paper, we will consider two classes of activation
functions for the neural network model (1). To this end, we define
the vector function g e C(R*,R") by g(x) = (g1(X1).&2(X2), . . ., (Xn)),
where x = (x1,X2, ...,Xp) e R".

Firstly, we consider the bounded activation functions, which can
be given in the form

B£{g())Igi € C(R.R),3k; > 0,Igi(xi)| < ki,Vx; e Ri=1,2,...,n},

where the constants k;, i=1,2,...,n, are generally called to be
saturation constants.

Secondly, we consider the Lurie-type activation functions,
which can be given in the form

FL{g()lg € K,k > 0,x8:(x;) < kix?,vx; e Ri=1,2,...,n},
where
K£{¢peCRR)s¢)(s) =0 and D+ ¢(s) > 0,seR},

and the constants k;, i=1,2,...,n, are generally called to be Lurie
constants.

For convenience, we introduce the following notations:

Let Cbe the Banach space of continuous functions s : [-7,0]—>R"
with the norm I/l = sup, . ;_, q¥(s)|- For a given constant H > 0,
Cy is defined as the subset {iy e C : I/l < H}. Let CCF* be the set of
all non-negative continuous functionals K : C— [0, +o00), mapping
bounded sets in C into bounded sets in [0, +oc0). For any initial
condition € C, the solution of (1) that starts from the initial
condition ¥ will be denoted by x(t;y). If there is no need to
emphasize the initial condition, any solution of (1) will also simply
be denoted by x(t). For any continuous bounded function h (t),t > 0,
we write |h| =sup; . o/h(t)| and h = inf, . oh(t).

Definition 2.1 (Wang et al. [14]). Network (1) is said to be
uniformly stable in Lagrange sense (or uniformly bounded), if for
any H >0, there exists a constant K=K(H)>0 such that
[x(t; )] <K for all y e Cy and t > 0.

Definition 2.2 (Liao et al. [11]). Let Q c R" be a compact set in R"
and the complement of Q by R"\Q. For any xeR, p(x,Q) =
inf, c o|x—y| is the distance between x and Q, a compact set
Q CR" is said to be a global attractive set of network (1), if for
every solution x(t) such that x(t)eR"\Q,t>0, we have
lime_, ; p(x(1),2)=0.

Obviously, if network (1) has a global attractive set, it is
ultimately bounded.

In many neural network applications, the rate of convergence
or attractivity is very important in improving computational

performance. In the following, we introduce the notion of globally
exponentially attractive (GEA) sets.

Definition 2.3 (Wangetal. [14]). Acompactset Q2 c R"is said to be
a GEA set of (1) (in strong sense), if there exist a constant /4 > 0 and
a continuous functional K e CCF™* such that for every solution x(t)
with x(t) e R"\Q,t >0, we have p(x(t),2) < K())exp{—At} for all
t>0.

It is easy to see that the above definition for a GEA set is often
inconvenient to use, and the main difficulty lies in the use of the
distance function p(x,Q), which seems hard to be linked to the
exponential decay function. In the following, we give two defini-
tions for a GEA set in a weaker form. And these definitions explicitly
involve in positive definite functions, hence they are typically
suitable in employing Lyapunov-like functions to analyze global
exponential attractivity of neural network models.

Definition 2.4 (Liao et al. [11]). If there exist a radially unbounded
and positive definite function V(x), a continuous functional
K eCCF™, positive constants ¢ and «, such that for any solution
x(t) =x(t; ) of (1), V(x(t)) > ¢,t > 0, implies

V(x(0)—¢ < K(p)exp{—at},

then network (1) is said to be globally exponentially attractive with
respect to V,and the compact set Q := {x e R"|V(x) < ¢} is called to be
a GEA set of (1).

Definition 2.5 (Liao et al. [12]). If there exist radially unbounded
and positive definite functions V;(x;),x; € R, continuous functionals
K; e CCF ™, positive constants ¢; and o;, such that for any solution
x(t) =x(t; ) of (1), Vi(x;()) > ¢;,t = 0, implies

Vitxi(H)—¢; < Ki(p)exp{—a;t}, i=1,2,...,n,

then network (1) is said to be globally exponentially attractive
with respect to (Vi,V,,...,V;), and the compact set Q =
{x e R"|Vi(x;) < £;} is called to be a GEA set of (1).

Definition 2.6 (Wang et al. [14]). Network (1) is called globally
exponentially stable (GES) in Lagrange sense, if it is both uniformly
stable in Lagrange sense and globally exponentially attractive. If
there is a need to emphasize the Lyapunov-like functions, the
network will be called globally exponentially stable in Lagrange
sense with respect to V or (V1,V5,...,Vp).

We end this section with two preliminary results, which will be
used in the proofs of the main results.

Lemma 2.1 (Wang et al. [14]). Let G e C([tg,o0),R), and there exist
positive constants o and f§ such that

DT G(t) < —aG(t)+ B, t=ty,

then

i

G(t)—& < (G(to)— b

&) exp{—a(t—tg)}, t=tp.

In particular, if G(t) > f/a, t > to, then G(t) exponentially approaches
f/o as t increases.

The following lemma provides a key step in proving global
exponential attractivity for system (1).

Lemma 2.2. Letx(t) := x(t; ) be asolution of (1) and g; be givenin (1)
with x;g;(x;) >0, x; R, i=1,2, ...,n. Define the function

n Xi() n t
vo=3" [Tamd+ Y [ gwends =0

i=1 i=17""
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