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a b s t r a c t

This paper develops a generalized nonlinear discriminant analysis (GNDA) method and deals with its

small sample size (SSS) problems. GNDA is a nonlinear extension of linear discriminant analysis (LDA),

while kernel Fisher discriminant analysis (KFDA) can be regarded as a special case of GNDA. In LDA, an

under sample problem or a small sample size problem occurs when the sample size is less than the sample

dimensionality, which will result in the singularity of the within-class scatter matrix. Due to a

high-dimensional nonlinear mapping in GNDA, small sample size problems arise rather frequently.

To tackle this issue, this research presents five different schemes for GNDA to solve the SSS problems.

Experimental results on real-world data sets show that these schemes for GNDA are very effective in

tackling small sample size problems.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Discriminant analysis has been widely used for feature
extraction and dimensionality reduction in pattern recognition.
Linear discriminant analysis (LDA), also known as Fisher linear
discriminant is one of the most commonly used method [1]. The
goal of LDA is to find an optimal subspace such that the separability
of two classes is maximized. LDA is to maximize

trðWT SbWÞ

trðWT SwWÞ
ð1Þ

where trð�Þ denotes the trace of matrix �, W is a linear projection or
transformation matrix, Sb is the between-class scatter matrix and
Sw is the within-class scatter matrix. Maximizing (1) results in the
following generalized eigenvalue problem

SbW¼ lSwW ð2Þ

The optimal discriminant subspace is spanned by the generalized
eigenvectors. If Sw is nonsingular, the solution to the generalized
eigenvalue problem (1) is obtained by applying eigendecomposi-
tion on Sw

�1Sb. However, for a small sample size (SSS) problem the
scatter matrix Sw is singular. For example, face recognition is a
kind of SSS problems with high-dimensional and few training
samples. So far, there are some methods proposed to deal with the

problem of singularity of Sw, such as Fisherface [2], discriminant
common vectors [3], dual space [4], LDA-GSVD (generalized
singular value decomposition) [5], LDA-QR [6], PCA+NULL [7],
and LDA-FKT (Fukunaga–Koontz transform) [8]. In [8], a unifying
framework is proposed to understand different methods. By using
Fukunaga–Koontz transform (FKT), the whole sample space can be
decomposed into four subspaces. Discriminant information in the
four subspaces is different, and the performance of methods
depends on their subspaces. The authors in [8] also report that
LDA-GSVD is equivalent to the LDA-FKT, and LDA-FKT has the best
performance.

Unfortunately, LDA can only extract linear features from samples,
it fails to process the data which consist of nonlinear features [9].
Kernel Fisher discriminant analysis (KFDA), one of the nonlinear
discriminant methods, has been developed for extracting nonlinear
discriminant features [9]. A similar work as KFDA is presented in [10].
Kernel functions are restricted to positive semi-definite symmetric
functions, i.e., Mercer kernels as in [11,12]. KFDA often encounters SSS
problems because Sw in a high-dimensional feature space is always
singular. To overcome the computational difficulty with KFDA, a
perturbation mI is added to Sw in [9] where I is an identity matrix as
the same size as Sw, and kernel Fisherface is proposed in [13].

This paper proposes a generalized nonlinear discriminant analysis
(GNDA). GNDA consists of two steps. First, data in a sample space are
mapped into a nonlinear mapping space by using some nonlinear
mapping function. Then LDA is implemented in the nonlinear mapping
space. In GNDA, the nonlinear mapping function can be any real-valued
nonlinear function, for instance, empirical mapping functions as in
[14,15], Mercer kernel mapping as in [11,12], etc. GNDA is identical
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with KFDA if the same Mercer kernel is used in both of them. In this
sense, GNDA suggests a universe framework which unifies KFDA.
Similarly, SSS problems will occur when using GNDA. We solve
this problem by extending linear methods in [2,5–8] to obtain
GNDA-Fisherface, GNDA-PCA+NULL, GNDA-QR, GNDA-GSVD and
GNDA-FKT algorithms.

The rest of the paper is organized as follows: Section 2 briefly
reviews the related work including LDA and KFDA. Section 3
describes GNDA and gives a theorem to show that GNDA unifies
KFDA under certain conditions. In Section 4, we cope with SSS
problems in GNDA and present five schemes. Section 5 shows some
simulation results of real-world recognition problems on the face
and digit databases. The concluding remarks are given in Section 6.

2. Related work

In this section, we briefly review LDA and KFDA, respectively.

2.1. Linear discriminant analysis

Here we consider a two-class problem; X1 ¼ fx1, . . . ,x‘1
g and

X2 ¼ fx1, . . . ,x‘2
g are two-class sample sets, respectively. Let

X ¼ X1 [ X2. The goal of LDA is to find an optimal linear transforma-
tion such that the separability of two classes is maximized.
This is achieved by minimizing the within-class distance whilst
maximizing the between-class distance. In Section 1, we have
introduced the optimization formula for LDA (1). The between- and
within-class scatter matrices can be written as

Sb ¼ ðm1�m2Þðm1�m2Þ
T

ð3Þ

and

Sw ¼
X2

i ¼ 1

Xli

j ¼ 1,xj AXi

ðxj�miÞðxj�miÞ
T

ð4Þ

where mi ¼ ð1=‘iÞ
P‘i

j ¼ 1,xj AXi
xj,i¼ 1,2 is the mean of the i-th class

samples. Maximizing (1) results in the generalized eigenvalue
problem (2). The above LDA method for two-class problem can be
directly generalized to multi-class problem [1].

2.2. Kernel Fisher discriminant analysis

KFDA is one of the nonlinear discriminant analysis methods [9].
For a two-class problem, KFDA has the following form:

max
a

trðaT SK
b aÞ

trðaT SK
waÞ

ð5Þ

where SK
w and SK

b are quasi within-class and between-class scatter
matrices, respectively. There have

SK
w ¼KMK ð6Þ

and

SK
b ¼

X2

m ¼ 1

‘iðKmem�KeÞðKmem�KeÞT ð7Þ

where K and Km are kernel gram matrices, ðKÞij ¼ kðxi,xjÞjxi ,xj AX ,

ðKmÞij ¼ kðxi,xjÞjxi AX,xj AXm
,em ¼ ½1=‘m, . . . ,1=‘m�

T AR‘m�1, e¼ ½1=‘,

. . . ,1=‘�T AR‘�1, M¼I�N, IAR‘�‘ is an identify matrix, and

Nij ¼
1=‘m if xi,xjAXm

0 otherwise

�

It can be shown that MM¼M and MT
¼M. In other words, M is an

idempotent matrix. Similarly, maximizing (5) results in the following

generalized eigenvalue problem

SK
b a¼ gSK

wa ð8Þ

KFDA can also be extended to solve multi-class problems.

3. Generalized nonlinear discriminant analysis

This section presents GNDA which implements a LDA in a
nonlinear mapping space. The corresponding nonlinear mapping
function g(x) can be any real-valued nonlinear function. Let the set
of independently and identically distributed samples be

fðxi,yiÞjxiARn, yiAf1,2, . . . ,Cg, i¼ 1, . . . ,‘g

where C is the total number of classes, ‘ is the total number of
samples and n is the dimensionality of samples. Let Xm be the m-th
class sample set; then the training set is X ¼

SC
m ¼ 1 Xm. The number

of samples in the m-th class is denoted by ‘m; thus ‘¼
PC

m ¼ 1 ‘m.
The set of mapped samples in the nonlinear mapping space can be
expressed as

fðgðxiÞ,yiÞjgðxiÞARN , yiAf1,2, . . . ,Cg, i¼ 1, . . . ,‘g ð9Þ

where g(x) is a pre-specified real nonlinear mapping, and N is the
dimensionality of the nonlinear mapping space. Let the sample
matrix in the nonlinear mapping space be

G¼ ½gðx1Þ,gðx2Þ, . . . ,gðx‘Þ�ARN�‘
ð10Þ

Since the mapped patterns in the nonlinear mapping space are
definitely known when the training samples are given. The
computation of any statistic about the samples in the nonlinear
mapping space is feasible, such as the mean of samples, which is
impossible in a reproducing kernel Hilbert space (RKHS). In the
nonlinear mapping space, the Fisher criterion is to maximize

JGðWÞ ¼
trðWT SG

b WÞ

trðWT SG
wWÞ

ð11Þ

where the between-class scatter matrix is

SG
b ¼

XC

m ¼ 1

‘mðmm�mÞðmm�mÞT ¼
XC

m ¼ 1

‘mðGmem�GeÞðGmem�GeÞT

ð12Þ

in which Gm is the m-th class sample matrix consisting of column
vector gðxiÞjxi AXm

, and the within-class scatter matrix is

SG
w ¼

XC

m ¼ 1

X‘m

i ¼ 1,xi AXm

ðgðxiÞ�mmÞðgðxiÞ�mmÞ
T
¼GMGT

ð13Þ

Hence the total scatter matrix in the nonlinear mapping space can
be expressed as

SG
t ¼ SG

b þSG
w ð14Þ

If SG
w is nonsingular, the solution to (11) amounts to solving the

generalized eigenvalue problem

SG
b W¼ lSG

wW ð15Þ

Let the eigenvalues of (15) be flig and the corresponding eigen-
vectors be fmig. Sort eigenvectors fmig according to li in descending
order l1Zl2Z � � �ZlC�1Z � � �. Let W consist of the first C�1
eigenvectors. Namely there have

W¼ ½m1, . . . ,mC�1�ARN�ðC�1Þ
ð16Þ

Specifically, if the nonlinear mapping function takes an empirical
mapping function, then the nonlinear mapping space is an empiri-
cal mapping space or a hidden space [14,15]. Of course, kernel
functions can be used to construct nonlinear mapping functions
and are not constrained to Mercer’s condition. It is known that
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