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Abstract

A probabilistic, ‘‘neural’’ approach to sensor modelling and classification is described, performing local data fusion in a wireless

system for embedded sensors using a continuous restricted Boltzmann machine (CRBM). The sensor data clusters are non-Gaussian and

their classification is non-linear. A CRBM is shown to be able to model complex data distributions and to adjust autonomously to

measured sensor drift. Performance is compared with that of single layer and multilayer neural classifiers. It is shown that a CRBM can

resolve the problem of catastrophic interference that is typical of associative memory based models.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Driven by the recent advances in microsensor technology,
multisensor microsystems have been developed for diverse
applications. For example, in the wireless integrated
network sensors (WINS) [15], the SMARTDUST [21] and
the picoNode [16] arrays, low cost sensing devices are
deployed for environmental and machinery monitoring. To
overcome the restrictions of communication network
bandwidth, sensor signals are often partly processed locally.
Events of interest trigger an alarm to a basestation for
further decision making. Local data fusion (typically
classification) must allow data fusion at all levels (signal,
pixel, feature and symbol) and neural solutions are often
chosen [11].

We focus on local data fusion using a non-linear,
probabilistic generative model, the ‘‘continuous restricted
Boltzmann machine’’ (CRBM) [2] and a linear classifier in
the form of a single layer perceptron (SLP). The CRBM
extracts salient features by modelling the data distribution
of the integrated sensors, while the SLP performs binary
classification on the extracted features. The CRBM was

developed to fuse continuous-valued (analogue) data
locally and to have a hardware-amenable architecture [2].
The CRBM has one visible and one hidden layer with a

symmetric inter-layer weight matrix {W}. Each stochastic
neuron j takes the following form:

sj ¼ tanh aj

X
i

wijsi þ s �Njð0; 1Þ

 !" #
, (1)

where

� si is the input from neuron i,
� Njð0; 1Þ is a zero-mean Gaussian noise source with

amplitude of 1,
� s �Njð0; 1Þ allows the CRBM to perform probabilistic

analogue computation via Gibbs sampling [4],
� aj is a parameter which controls the slope of the sigmoid

function, such that the behaviour of a neuron j can vary
from deterministic (small aj) through continuous-sto-
chastic (moderate aj) to binary-stochastic (large aj).

Both fajg and fwijg are trained by a ‘‘minimizing con-
trastive divergence’’ (MCD) learning rule [6]. The simp-
lified MCD learning rule requires only addition and
multiplication, and is therefore more hardware-
amenable [2].
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The objectives of this paper are

(1) to demonstrate that the CRBM can model complex
non-Gaussian distributions,

(2) to illustrate the advantage of adaptive sensor fusion in
a dynamic environment.

There are two major challenges in our chosen sensing
application (digestive system monitoring with an array of
ion sensitive field effect transistor (ISFET) pH sensors
[19]). Sensor drift, the first challenge, is caused by unknown
dynamic processes such as poisoning or ageing of the
sensor. The CRBM is able to adapt ‘‘on-line’’ to changing
data distribution and can thus compensate for sensor drift.
The second challenge is that, at any time during normal
usage, the sensor array will produce data from only one
area of data space. The data available for on-line training
are not, therefore, representative of the full distribution
from which training data are drawn (i.e. only data drawn
from a sub-class of the full data space are likely to be
available at one time, under normal operating conditions).
Under these conditions, most associative memory based
systems simply learn to model the available sub-class and
effectively ‘‘forget’’ the existence of all other sub-classes.
Such a system loses the ability to classify data. This
problem is commonly known as ‘catastrophic interference’
(CI) [12].

This paper is organized as follows. Section 2 shows that a
CRBM can both model non-Gaussian distributions and

avoid CI. In this case, the learning is evaluated based on the
reconstruction model and a binary classification with a SLP
connected to the hidden units of the CRBM (Section 3).
Section 4 examines the CRBM’s modelling capability
in both static and dynamic environments. Finally,
we summarize the meaning of these results and draw
conclusions.

2. Sensor modelling

In an embedded sensor fusion/classification system, an
initial classification of the data from multiple sensors is
useful, in order to decide whether onward transmission of
the sensors’ outputs is worthwhile. For example, it may be
desirable that the wireless communication system be
switched off until a particular set of sensor outputs is
detected, in order to minimize power consumption. The
noise that is present in most real data and their
measurement systems is often non-Gaussian. For example,
strong non-Gaussian radio frequency interference is
unavoidable in landmine detection [18], and the emitted
signals by sources are often non-Gaussian in localization of
multiple sources [8]. It is therefore necessary to extend our
previous work on Gaussian data distributions [20] to non-
Gaussian modelling problems.
Modelling non-Gaussian distributions with the Gaussian

‘‘experts’’ that underlie a CRBM is non-trivial. To
illustrate this, we modelled a 2D non-Gaussian data
distribution (Fig. 1(a)) using a CRBM with five (Gaussian)
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Fig. 1. (a) Non-Gaussian training data; (b) reconstruction data after training with aj unconstrained and 1-step Gibbs sampling; (c) reconstruction data

after training with aj unconstrained and 20-step Gibbs sampling; and (d) reconstruction data after training with aj fixed at 0.1. The training duration for

(b)–(d) is 5000 epochs.
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