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Abstract

This work presents three kernel functions that can be used as inner product operators on non-binned spike trains, allowing the use of
state-of-the-art classification techniques. One of the main advantages is that this approach does not require the spike trains to be binned.
Thus a high temporal resolution is preserved which is needed when temporal coding is used. The kernels are closely related to several
recent and often-used spike train metrics which take into account the biological variability of spike trains. It follows that the different

existing metrics are unified by the spike train kernels presented.

As a test of the classification potential of the new kernel functions, a jittered spike train template classification problem is solved.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Spike train classification, the classification of stereo-
typical neuron pulse trains, is of interest to neurobiological
research. Here spike trains generated by real neurons need
to be related to stimuli, for example in cognitive research
where the function of spikes as a code is researched [14], or
interpreted as in brain—machine interfaces [17]. Spike train
classification is also of interest in neural network research,
where spiking neurons get increasing attention [11] due to
their greater computational power [10] and their inherent
ability to process temporal information.

A Dbiological spike train is modeled as a set of events
containing the precise time instants at which a neuron fires.
Traditionally, spike trains are represented in a simplified
way by binning them: the actual spike times are grouped in
so-called temporal bins which have a fixed size that is
usually much larger than the average inter-spike-interval.
This binning is founded on the rate coding hypothesis
[14,1]: the actual spike times do not matter, it is the average
firing rate that encodes the information. Recently however,
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much physiological and theoretical [19,20,23] evidence has
been obtained to the effect that exact spike times do matter
and can improve neuron processing performance greatly.
The current view on this topic is that both codings are used
and can co-exist [22,13]. Some parts of the brain mainly
communicate through the average firing rate of their
neurons (like the motor neurons), while other parts are
very sensitive to the exact temporal position of the spikes
(higher brain regions). Many current classification techni-
ques and metrics for spike trains are nevertheless still based
on binned spike trains.

An overview of different metrics for spike train is
presented in Fig. 1. Traditionally, classification of spike
trains is performed using distance metrics based on the
Euclidean distance of the binned spike train [21,7] where
the space dimensions equals the number of bins. However,
these metrics perform poorly because they do not take into
account the underlying biological variance of spike trains,
such as the natural spike jitter. Recent metrics that apply to
non-binned spike trains [5,12,27,15] do take these biologi-
cal factors into account, which results in improved
classification performance.

In this paper, we show that several of these recent
metrics are identical or closely related. Furthermore we
show that kernel functions can be constructed that are
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Fig. 1. Taxonomy of the different spike train metrics and their references.

closely related to these metrics. Kernel functions arise
naturally in classification approaches [24,16] where mea-
surement data x € X are mapped into a high-dimensional
feature space Y using the mapping ¢ : X — Y. The actual
classification is performed in feature space. This requires an
inner product operator (¢p(x), ¢p(z)) in feature space. The
feature map and the inner product define a so-called kernel
function K : X x X — R which equals K(x,z) = (¢(x),
¢(z)). Usually, easy-to-compute kernel functions are
directly defined in measurement space, and Mercer’s
theorem [24,16] guarantees the existence of a suitable
implicitly defined feature mapping that does not need to be
made explicit. In this paper, however, we shall explicitly
identify ¢ which proves that the proposed functions indeed
posses the kernel properties, and which allows us to link
the kernels to several existing spike train metrics.

Kernel methods have previously already been applied to
spike trains. There is the spikernel [18], a string-based
kernel that is applied to the instantaneous firing rate, and
the alignment score kernel [6], a kernel built by an explicit
feature space mapping based on an alignment score such as
the one presented in Section 4.3. However, both these
methods apply to binned spike trains. This binning
introduces an extra parameter to tune (bin size) and most
importantly, throws away much of the temporal informa-
tion present in the spike trains. When the information is
primarily encoded in the exact spike times, these methods
will not perform well.

To evaluate the performance of the spike train kernels,
we use an artificial benchmark application, the jittered
spike train template classification problem: two random
spike patterns are generated and from these, randomly
perturbed versions are created by moving spikes around.
A classifier has to be trained that has to detect the spike
template from which a jittered spike train originates.
Although this application may appear simple, complex
tasks, like speech recognition [25], are extensions of this
simple benchmark.

This contribution is organized as follows. First, in Section
2, we will introduce three simple kernel functions that apply
to sets of spike times. Then, in Section 3 we will show that
these functions are actual kernels by presenting the actual
feature mappings. In Section 4, we will present several
existing non-binned spike train metrics and show that they

are equivalent or strongly related to each other and strongly
related to the three introduced new kernels. The classifica-
tion performance of the kernels is evaluated in Section 5 on
an artificial benchmark. We conclude in Section 6.

2. Spike train kernels

We will now present three kernel functions that apply to
non-binned spike trains. A spike train x is simply the set of
spike times x = {¢1,t,...,ty}. Our kernel functions take
two spike trains x and z as arguments, with N and M spike
times, respectively. We denote the ith spike time of x as ¢
and the jth spike time of z as 7.

The first kernel has a piecewise linear weighting of the
spike time difference:
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the second kernel is related to the well known Laplacian
kernel:
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and the third is related to the Gaussian kernel:
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All spike times of the first spike train are compared to all
spike times of the second spike train and a ‘weight’,
decreasing monotonically with the distance between the
two spikes, is taken into account. This results in kernels
that operate on sets instead of on vectors, as is usually the
case. A plot of the weight functions applied to individual
spike pairs is shown in Fig. 2. The scale parameter A
determines the ‘width’ of the kernels. A large 4 leads to a
kernel relating only near-by spikes, small /1 results in a
kernel comparing all spikes to all other spikes. The kernels
are scaled such that the widths of all three kernels are
approximately equal for a given A. This will allow a more
easy comparison of the kernel’s performance.
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