
Studying bloat control and maintenance of effective code in linear
genetic programming for symbolic regression

Léo Françoso dal Piccol Sotto, Vinícius Veloso de Melo n

Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil

a r t i c l e i n f o

Article history:
Received 31 March 2015
Received in revised form
2 October 2015
Accepted 5 October 2015
Available online 11 November 2015

Keywords:
Bloat control
Effective code
Symbolic regression
Linear genetic programming

a b s t r a c t

Linear Genetic Programming (LGP) is an Evolutionary Computation algorithm, inspired in the Genetic
Programming (GP) algorithm. Instead of using the standard tree representation of GP, LGP evolves a
linear program, which causes a graph-based data flow with code reuse. LGP has been shown to out-
perform GP in several problems, including Symbolic Regression (SReg), and to produce simpler solutions.
In this paper, we propose several LGP variants and compare them with a traditional LGP algorithm on a
set of benchmark SReg functions from the literature. The main objectives of the variants were to both
control bloat and privilege useful code in the population. Here we evaluate their effects during the
evolution process and in the quality of the final solutions. Analysis of the results showed that bloat
control and effective code maintenance worked, but they did not guarantee improvement in solution
quality.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Regression analysis is a statistical process of estimating rela-
tionships among variables and using that information to perform
predictions. Usually, there is a set of independent explanatory
variables and a single dependent response variable. Regression
techniques are used to build a model that allows the correct/
approximate prediction of the response variable using the expla-
natory variables as input. In fact, a model is assumed a priori,
determined by the researcher, and the regression technique esti-
mates the coefficients that minimize a certain criterion, for
instance, the least-squared error. On the other hand, symbolic
regression (SReg) consists of, without the a priori model, auto-
matically finding a mathematical expression that adjusts as best as
possible to these data [15]. That is, given the explanatory and
response variables, an SReg technique has to find both the model
and the coefficients that minimize it. Therefore, SReg is a harder
problem than regular regression. Since one wishes to find the best
model, a global optimization technique is supposed to be used,
and Evolutionary Computation methods are widely employed for
this task.

In order to solve SReg problems, Koza [15] proposed the
Genetic Programming (GP) technique, an extension of the Genetic

Algorithm (GA) technique [27]. While GA operates on a fixed-
length array that is a codification of a problem's solution, GP
manipulates a variable-length tree data-structure, that is a code to
be used to solve the problem. Thus, techniques such as GP and
similar approaches are proper for solving SReg problems and have
been widely investigated [26,22,13,10,33,7].

In this work, we used the Linear Genetic Programming (LGP,
[5]) technique for solving SReg problems. Instead of working with
trees, LGP evolves a linear program in an array to solve a particular
task, being the solution directly convertible to an imperative
programming language. LGP has been used to efficiently solve
various problems in the literature such as symbolic regression,
classification [5,2], estimation models [14], and time series mod-
eling [12]. Researches that compare LGP with basic GP [23,5] show
that LGP outperforms GP in several tasks, including SReg. All those
results suggest that LGP has a high potential as an efficient Genetic
Programming variant.

A well-known issue in GP and similar techniques that employ
variable-length representations is called bloat: an excessive code
growth without a corresponding improvement in fitness
[25,28,29]. Bloat may cause several problems: (1) solutions may
grow to a point that fills the system memory; (2) huge solutions
are slow to be evaluated; (3) spurious parts of the solution may
hinder its improvement because modifications of those parts do
not change the fitness; (4) bloated solutions are black-boxes.
Therefore, bloat is a major and active topic of study in GP
[32,1,31,17,4,18,24,9,28].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.109
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: leo.sotto352@gmail.com (L.F.d.P. Sotto),

vinicius.melo@unifesp.br (V.V.d. Melo).

Neurocomputing 180 (2016) 79–93

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.10.109
http://dx.doi.org/10.1016/j.neucom.2015.10.109
http://dx.doi.org/10.1016/j.neucom.2015.10.109
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.109&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.109&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.109&domain=pdf
mailto:leo.sotto352@gmail.com
mailto:vinicius.melo@unifesp.br
http://dx.doi.org/10.1016/j.neucom.2015.10.109


Usually, researchers evaluate their bloat control methods in a
few benchmark problems of distinct tasks, for instance, symbolic
regression of benchmark functions, artificial ant [16], even-parity
[15], and multiplexer [15]. On the other hand, the objective of the
present work is to compare LGP variants, mostly in terms of
selection mechanisms for bloat control, focusing on the SReg task.
For such purpose, many distinct benchmark functions were
selected. Here we proposed and developed a few variants of a
basic LGP implementation, analyzed them from two points of
view, and tried to establish a link between them to understand:

� their behavior in the evolution process, in terms of the pro-
portion of effective code in the individuals;

� their effects in the quality of the solutions generated.

Those variants, explained in detail in a later section in this
paper, include: (1) the usage of bloat control techniques to
increase the presence of smaller (simpler) individuals in the
population, (2) the usage of techniques to provide a higher per-
centage of effective code in the population, and (3) an operator
that joins two successful individuals into one, intending to treat
them as subfunctions. Furthermore, we applied the items 1 and
2 to 3, that is, using the operator that joins two solutions alongside
with the techniques to both control bloat and increase the per-
centage of effective code. The study performed herein is an
experimental one, trying to verify the usefulness of the proposed
variants. A theory to understand and predict LGP behavior when
using such variants is yet to be developed.

The remaining of this paper is structured as follows. Section 2
describes the Methodology of the work, presenting each variant in
detail and its pseudocode. The experimental setup is introduced in
Section 3. Results and the discussion are presented in Section 4. We
end this paper with Conclusions and Future Works in Section 5.

2. Methods

In this section, we explain the basic LGP implementation we
used and also present the variations of this basic implementation.

2.1. Linear genetic programming

Linear Genetic Programming (LGP) is an Evolutionary Compu-
tation (EC) technique that evolves a linear program, instead of a
functional one as in GP, to solve a particular task. The linear
representation is its main difference from standard tree-like GP
[5]. The individuals in LGP are represented as a sequence of
instructions, each using the results of previous instructions, con-
stant values, or input values. A register stores the result of a par-
ticular instruction, and other instructions may use registers as
arguments for an operator. Registers can be of three types: (1)
calculation registers (which store results of instructions), (2) con-
stant registers (constants predefined by the user), or (3) input
registers, which are the program's input. An example of an LGP
individual is shown in Fig. 1.

The use of such data structure has many consequences. As
results of previous calculations can be used by more than one
instruction, the connections among the instructions can be seen as
a graph-based data flow. This structure helps to reduce the repe-
tition of blocks of code that would be necessary for a tree struc-
ture. However, calculation registers may not be used by other
instructions, leading to the emergence of non-effective code-blocks
of code whose results are not used to change the output. Mod-
ifications performed on such code are named neutral variations
that were identified as being a main cause of code growth as well as

an important motor of evolutionary progress allowing for neutral
walks over the fitness landscape [5].

As pointed out in [5], structurally non-effective code is easier to
appear in individuals than semantic introns (code actually used by
the program but that has no effect on the output, for instance,
adding zero to the output). Therefore, they may quickly grow
individuals to the maximum allowed size, resulting in an implicit
parsimony pressure on the effective code. The large amount of
non-effective code also implies that neutral variations are more
likely to occur. Such individuals may improve and remain compact
by reusing results from calculation registers. Also, non-effective
code can be enabled (becoming effective) during the evolution
resulting in a very distinct solution [3–5].

In a tree-based representation, it is not only harder to identify
neutral code but also to remove or insert neutral code. In LGP, this
is an easy task because the neutral code is not referenced/used by
the output register. Therefore, the ancestors of the output register
allow the identification of the registers that are being used and
those not being used.

An algorithm for returning only the effective code of an indi-
vidual is detailed in [5]. The general idea is to begin with the last
instruction and move upwards in the list of instructions, identi-
fying instructions that store their results into registers that are not
used by instructions below. These instructions are non-effective,
while the others are effective. For instance, in Fig. 1 the first
instruction stores its result into r[4], which is not used below.
Therefore, the first instruction is a non-effective code.

In the presence of non-effective code, traditional evolutionary
operators used in tree-based GP may have much more destructive
consequences, not only increasing both the bloat and the variation
step-size [3,2] but also reducing convergence rates. Such con-
sequences happen because LGP individuals may have just a small
part of effective code, and the recombination with another indi-
vidual is likely to add even more non-effective code than to break
the current effective code. However, it cannot be guaranteed that
effective code will remain effective after a big segment crossover
and what will be the configuration of the same instructions in a
different individual. A reason for such issue is that individuals use
information from registers and store results into registers. Thus, in
recombination, if the second individual does not use the registers
employed by the first individual, then the first code becomes non-
effective. The same can be said for the mutation procedure: when
it replaces an argument that is currently a calculation register by a
constant value, the code that stores its result into that calculation
register may become non-effective. Therefore, the genetic opera-
tors have to be adapted for LGP in order do reduce those negative
effects.

As in GP, the main evolutionary operators for LGP are crossover
and mutation. Crossover is like in classical discrete Genetic Algo-
rithms with variable-length individuals. Parents are chosen via
tournament selection and parts of their code are exchanged (one-

Fig. 1. Example of an individual generated by LGP. The final result is stored in
register r[0], as attributed by the last instruction.

L.F.d.P. Sotto, V.V.d. Melo / Neurocomputing 180 (2016) 79–9380



Download	English	Version:

https://daneshyari.com/en/article/408631

Download	Persian	Version:

https://daneshyari.com/article/408631

Daneshyari.com

https://daneshyari.com/en/article/408631
https://daneshyari.com/article/408631
https://daneshyari.com/

