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a b s t r a c t

Hidden Markov models (HMMs) are widely used probabilistic models of sequential data. As with other
probabilistic models, they require the specification of local conditional probability distributions, whose
assessment can be too difficult and error-prone, especially when data are scarce or costly to acquire. The
imprecise HMM (iHMM) generalizes HMMs by allowing the quantification to be done by sets of, instead
of single, probability distributions. iHMMs have the ability to suspend judgment when there is not
enough statistical evidence, and can serve as a sensitivity analysis tool for standard non-stationary
HMMs. In this paper, we consider iHMMs under the strong independence interpretation, for which we
develop efficient inference algorithms to address standard HMM usage such as the computation of
likelihoods and most probable explanations, as well as performing filtering and predictive inference.
Experiments with real data show that iHMMs produce more reliable inferences without compromising
the computational efficiency.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hidden Markov models (HMMs) are popular probabilistic descrip-
tions of paired sequences of states and observations [1], with applica-
tions in speech [1] and text processing [2], activity recognition [3] and
computational biology [4], to name but a few. An HMM assumes that
the states have been generated by a first-order Markov Chain process,
while each observation is generated based only on the paired state. The
specification of an HMM comprises an initial state probability distribu-
tion, which specifies the probability that the process originates in a
given state, a state transition probability distribution, which specifies the
probability that the process will transit from a given state to another,
and a symbol emission probability distribution, which specifies the
probability of observing a symbol conditional on a state.

In many domains, the transitions between consecutive hidden
states and the relation between a hidden variable and the corre-
sponding observation are affected by severe uncertainty. This is the
case, for instance, when data are scarce [5], observations are miss-
ing not-at-random [6], and information is conflicting. In such cases,
the use of probability distributions to represent uncertainty might
be inadequate and lead to overly confident inferences [5,7,8].

Credal sets [9] are closed and convex sets of probability distribu-
tions that allow for a more general representation of uncertainty,

including the situations just described. For instance, complete ignor-
ance about a variable is represented as the credal set of all probability
distributions on that variable, instead of the more common repre-
sentation as a uniform probability distribution. The imprecise (Multi-
nomial) Dirichlet model (IDM) learns credal sets from categorical data
in a situation of near ignorance, providing a more reliable (although
less informative) model of the underlying distribution than the more
common Multinomial-Dirichlet model [10].

This paper presents efficient algorithms for inference with
imprecise hidden Markov models (iHMMs), which allow the speci-
fication of a time- and state-discrete HMM with initial state, state
transition and symbol emission credal sets in lieu of probability
distributions. iHMMs provide a sound way to handle severe
uncertainty, with two direct benefits. First, they allow us to sus-
pend judgment when there is insufficient statistical evidence to
support a decision [11]. Second, they provide an efficient tool for
performing sensitivity analysis [12] in standard non-stationary
HMMs, allowing parameters to vary jointly, and in time.

In the rest of the paper, we review the related work (Section 2)
and the basics of HMMs (Section 3) and iHMMs (Section 4); we
then describe algorithms to deal with common uses such as com-
paring models according to the data likelihood (Section 5), pre-
dicting the current/next state given past observations (Section 6)
and finding the most likely hidden state sequence for a given
sequence of observations (Section 7). Experiments with speech and
action recognition, text completion, and part-of-speech tagging
(Section 8) provide evidence that iHMMs are indeed capable of
making reliable decisions and evaluating the sensitivity of HMMs to
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the learning sample size. Conclusions and future work are described
in Section 9.

2. Related work

Bayesian networks are probabilistic models where conditional
independences are represented by a graph whose nodes are
identified with random variables [13]. HMMs are part of a special
class of Bayesian networks (viz. tree-shaped Bayesian networks),
one for which efficient inference algorithms are available. As with
HMMs, Bayesian networks require uncertainty to be represented
by conditional probability distributions. Credal networks [14]
extend Bayesian networks to allow uncertainty to be modeled as
credal sets. The iHMMs we discuss here are special cases of tree-
shaped credal networks.

Drawing inferences from credal networks is a notoriously hard
problem. Posterior inference is NP-hard already in tree-shaped
credal networks, even when variables take on at most three values
[15]; it is NP-hard also in polytree-shaped networks when there is
no evidence, even if we allow (provably good) approximate results
[16]. A few tractable cases appear in the literature. Fagiuoli and
Zaffalon [17] developed a polynomial-time algorithm for polytree-
shaped credal networks with binary variables. Zaffalon and
Fagiuoli [18] described a method to compute unconditional pos-
terior bounds in tree-shaped networks. Mauá et al. [19] proved the
existence of a fully polynomial-time approximation scheme for
networks of bounded treewidth and bounded variable cardinality.1

There has also been intense work on fast approximate algo-
rithms (with no accuracy guarantees). The GL2U algorithm
implements a message passing scheme similar to loopy belief
propagation in Bayesian networks, that computes upper and lower
probabilities in polynomial-time [20]. Other researchers have
proposed the use of greedy heuristics [21,22]. Recently, Antonucci
et al. [23] developed an approximate method based on linear
programming relaxations that was shown to outperform other
approximate methods for marginal inference.

The algorithmic techniques discussed in the previous paragraphs
deal with the interpretation of imprecision in the parameters known
as strong independence. Strong independence, which we adopt in
this work, assumes the existence of an ideal probability distribution
which we cannot characterize for lack of resources. Epistemic irre-
levance (or its symmetrical counterpart epistemic independence)
makes no such claim, and allows for the possibility that there might
not be any single probability distribution capable of representing our
(uncertain) knowledge. De Cooman et al. [24] presented an efficient
algorithm for single-query marginal inferences in tree-shaped credal
networks under epistemic irrelevance. Their algorithm can be used to
efficiently perform filtering (i.e., estimating the marginal probability
of the future state given a sequence of observations). Recently, it was
shown that filtering on iHMMs provides the same results whether
one adopts strong independence or epistemic irrelevance [25,15].
Hence, filtering is also polynomial-time computable under strong
independence. We develop later an alternative algorithm for filtering
in iHMMs under strong independence. Our algorithm follows more
closely the syntax of HMMs and strong independence, and it is
arguably easier to understand and implement for a non-expert in
imprecise probability models.

De Bock and De Cooman [26] designed an algorithm that com-
putes the maximal joint state sequences of an iHMM under epis-
temic irrelevance in time polynomial in the input and linear in the

number of maximal sequences. A state sequence is maximal if there
is no other state sequence with greater probability under any dis-
tribution induced by the model. De Boom et al. [27] devised an
analogous algorithm for iHMMs under strong independence with
similar time complexity. Finding maximal state sequences is a
conservative generalization of the most likely state sequence
inference in HMMs. As the number of maximal sequences can be
exponential in the number of state variables, their algorithm does
not qualify as efficient (i.e., polynomial-time) inference in a strict
sense (unless we are satisfied with selecting an arbitrary bounded
subset of maximal sequences). In Section 7, we present polynomial-
time algorithms for computing unconditional maximin and max-
imax state sequences; these can be seen as another possible gen-
eralization of the most likely state sequence inference in HMMs.

Yet another generalization of the most likely state sequence
inference is the computation of E-admissible state sequences. A
state sequence is E-admissible if it is a most likely state sequence
for at least one distribution induced by an iHMM. Very recently, De
Bock et al. [28] developed an algorithm that efficiently decides
whether the set of E-admissible state sequences has cardinality
strictly greater than one in bounded treewidth models. They
showed how this algorithm can be used to measure the sensitivity
of MAP inferences to perturbations in the parameters.

The use of credal sets in modeling sequential data is not new.
Kozine and Utkin [29] investigatedMarkov chains with interval-valued
transition probabilities. De Cooman et al. [30] used credal sets for
sensitivity analysis in Markov chains. Škulj [31,32] defined imprecise
Markov chains, and analyzed some basic asymptotic behaviors such as
regularity and ergodicity. Crossman et al. [33] studied imprecise
Markov chains with absorbing states. Antonucci et al. [34] investigated
the use of iHMMs under epistemic irrelevance for tracking tasks.
Benavoli et al. [8] defined an iHMM over continuous variables aimed
at robust filtering. An imprecise version of the Baum–Welch procedure
[1], used to estimate the parameters of an HMM when the state
sequence is not observable, was developed by Antonucci et al. [35],
and tested on an activity recognition task. Van Camp and De Cooman
[36] extended the learning of iHMMs from data to the case of epis-
temic irrelevance. In [37], the authors designed a method for com-
paring two iHMMs according to their asymptotic data likelihood, and
also applied it on an activity recognition task.

3. Hidden Markov models

A Hidden Markov model (HMM) describes a stochastic process
over a sequence of state variables Q1;…;QT and manifest variables
O1;…;OT . Each state variable Qt, t ¼ 1;…; T , takes values in a finite
set Q¼ f1;…;Ng; each manifest variable Ot takes value in a finite
set O¼ f1;…;Mg.2 We denote an arbitrary value of state variable Qt

by qt, i or j, and similarly for Ot. The parameter t that indexes either
family of variables is called time (step); we use a temporal meta-
phor and refer to the relative indexes of variables by using terms
such as past, future and present in the usual way. The stochastic
process satisfies the following properties:

P1: A state variable Qt is stochastically independent of all the
variables in the past given its immediate predecessor
state variable Qt�1, that is, PðQt ¼ qt jQ1:t�1 ¼ q1:t�1;

O1:t�1 ¼ o1:t�1Þ ¼PðQt ¼ qt jQt�1 ¼ qt�1Þ, where the

1 A fully polynomial-time approximation scheme is a family of algorithms
parameterized by a rational ϵ40, each returning, in time polynomial in the input
and in 1/ϵ, a solution whose value is within a multiplicative factor of ð1þϵÞ of the
optimum.

2 The constraint that all state variables or all manifest variables share the same
sample space is introduced for simplicity of notation and because they are com-
monly observed in applications; they can be easily relaxed to generic discrete
variables without invalidating any of the results developed in this paper. A further
generalization, with some limitations, to the case of continuous manifest variables
is also discussed in Section 8.
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