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a b s t r a c t

Conventional multi-layer feedforward ANN controllers with back-propagation training are too complex

to be implemented in fast-dynamic power electric systems. This paper proposes a controller for power

electric systems based on a type of on-line trained neural network called the B-spline network (BSN).

Due to its linear nature and local weight updating, the BSN controller is more suitable for real-time

implementation than conventional multi-layer feedforward neural controllers. Based on a frequency

domain stability analysis, a design methodology for determining the two main parameters of the BSN is

presented. The design procedure of the proposed BSN controller is straightforward and simple.

Experimental results of UPS inverters with the proposed controller under various conditions show that

the proposed controller can achieve excellent performance.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Artificial Neural Network (ANN) is an interconnection of a
number of artificial neurons that simulates a biological brain
system. It has the ability to approximate an arbitrary function
mapping and can achieve a high degree of fault tolerance [1–3].
Currently, the most popular ANN is the multi-layer feedforward
ANN, which is widely used in system control. When enough
number of neurons are utilized, a neural network has the ability
to approximate an arbitrary function mapping. In a control
application, the ANNs are trained, either off-line or on-line, so
that a particular input leads to a specific target output. The
current most popular training algorithm for the feedforward ANN
is the back propagation (BP) [1–3], because it is stable, robust and
efficient.

Power electronics is the applications of solid-state electronics
for the control and conversion of electric power [4,5]. The typical
power electronic circuits are dc–dc, dc–ac and dc–dc converters.
In most of the power electric circuits, the solid state devices are
controlled by high-frequency pulse width modulation (PWM),
which is typically at frequency range from 1 kHz to 1 MHz.
Therefore, normally a very fast controller is needed for power
electronic circuits.

Both off-line and on-line trained ANN based controllers have
been successfully applied to many industries. In off-line trained
ANN, forward calculation of the ANN only involves addition,
multiplication and sigmoid function mapping which can be easily
implemented with a simple and low-cost analog circuit [6] or

cheap micro-processors. Therefore, the computing and imple-
mentation complexity of on-line trained ANN are much higher
than those of off-line trained ANNs [7]. Due to limited computing
time and the need for fast controller, most ANN based controllers
applied for power electric circuits are off-line trained ANNs.

For example, off-line trained ANN controllers have been used
in the current control of inverters for ac motor drives [8,9]. Here,
the ANN receives the phase-current errors and generates a PWM
signal to drive the switches of the inverter feeding the motor.
Refs. [10,11] presented an application of ANNs for the harmonic
elimination of PWM inverters, where an ANN replaced a large and
memory-demanding look-up table to generate the switching
angles of a PWM inverter for a given modulation index.

Even though off-line trained ANNs have the advantage of ease
of implementation, off-line training of an ANN requires a large
number of example patterns as training data, which generally
makes the design of the ANN difficult. For example, the off-line
ANN applied in [6] has required hundreds of patterns according to
the authors. Moreover, because the weights and the biases remain
fixed during operation and are totally determined by the training
data, the performance of the ANN controller is limited. Thus, in
general, other than an improvement in robustness, there is no
obvious advantage in replacing a conventional controller with an
off-line trained ANN controller.

In on-line training, the weights and the biases of the ANN are
continually adjusted during operation and hence the ANN has
better adaptability to the operating conditions. The Back Propaga-
tion training algorithm used for updating the weights of the
network involves a great deal of real time multiplication and
division operations. If implemented in hardware, the approach
results in a very complex circuit. If implemented in software, a
very fast digital processor is needed since there is generally only a

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2009.10.019

� Corresponding author. Tel.: +65 6516 6544; fax: +65 6779 1103.

E-mail address: elesd@nus.edu.sg (D. Srinivasan).

Neurocomputing 73 (2010) 593–601

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.10.019
mailto:elesd@nus.edu.sg


ARTICLE IN PRESS

very short time within a cycle for calculating the control effort
(less than 100mS). This implementation difficulty greatly affects
the use of the feedforward ANN controllers in power electric
applications.

B-spline network (BSN) [12,13], which is one kind of a neural
network, that utilizes piece-wise polynomial basis functions,
known as B-splines or B-spline basis functions, to store informa-
tion. Like other neural networks, BSN can approximate arbitrary
continuous functions to any degree of accuracy as long as the
network used is large enough. Unlike the global weight updating
scheme used in back-propagation-based neural networks, the BSN
operates with local weight updating scheme with the advantages
of fast convergence speed and low computation complexity. Due
to these specifications, BSN has been widely applied in modeling
complex system [14], adaptive filtering [12,15], pattern reorgani-
zation [16] and controlling complex systems [17–20].

When BSN is used as a controller, the input of a BSN is simply a
sequence number k to indicate the sampling interval within the
current cycle. The output of a BSN is a weighted sum of all B-spline
basis functions. Also, unlike the feedforward multi-layer ANNs,
there is no nonlinear function to be implemented in a B-spline
network, which reduces the stress of computation and implemen-
tation. These features make it more suitable than the feedforward
NNs with on-line back-propagation training for providing real time,
on-line solutions, as required in the present converter control.

In this paper, a feedforward learning controller based on BSN is
proposed for power electric applications like UPS inverter control.
Unlike the conventional multi-layer feedforward ANNs, there is
no nonlinear function to be implemented in the BSN in the
proposed controller, which reduces the stress of computation and
implementation.

A frequency domain model of the proposed controller has been
developed for stability analysis of the proposed system. The main
advantage of the proposed controller is that, unlike in other ANN
based schemes, the design of the proposed BSN controller is
simple requiring only two parameters, the B-spline support width
and the learning gain, to be determined. A third parameter,
forgetting factor, introduced to increase robustness, can be easily
chosen based on trial and error.

The proposed controller is applied to power converter for UPS
applications. Experimental results are provided to show that the very
high performance of system with the proposed controller is achieved.

2. Proposed BSN control scheme for power converters

The proposed control scheme is shown in Fig. 1 and consists of
two parallel parts, viz., the B-spline controller together with
reference feedforward and the feedback controller. Normally, the

control target of power converters can be voltage and current
based on the requirement of different applications. In the figure,
the output voltage of the power converter is assumed as control
target. In the z domain, the expression for the output voltage of
power converter is given by

VoðkÞ ¼ PðzÞuðkÞþdiðkÞ: ð1Þ

Here, PðzÞ is the discrete transfer function model of power
converter with sampling period h. All cyclical disturbances that
cause output voltage deviation (including distortion), such as the
load current (linear and nonlinear loads) and the dead-time effect
in the inverter switches, are summarized as di. The task of the
BSN-based controller is to come up with suitable control input
u(k) such that Vo(k) tracks a sinusoidal reference in the face of the
disturbance inputs di(k). It may be noted that the models of power
converters are normally low-order linear models with
disturbance.

During sampling interval k, the controller output may be
written as

uðkÞ ¼ uff ðkÞþufbðkÞþVref ðkÞ; ð2Þ

where uff and ufb are the outputs of the feedforward BSN
controller and the feedback controller, respectively, and Vref is
the reference input to be tracked. The feedforward of Vref is used
as the major component of the control effort to achieve better
tracking.

2.1. Proposed BSN controller

A BSN utilizes piece-wise polynomial basis functions, known
as B-splines or B-spline basis functions, to store information. An
nth-order B-spline consists of piece-wise polynomial functions of
order (n�1) [12–13]. The function evaluation of a B-spline is
generally called the membership and is denoted m (see Fig. 2).
That part of the B-spline’s input space for which m is not to zero is
called its support. Generally, the support of a basis function does
not cover the whole input space and, also, the supports overlap
each other. When the supports overlap each other by more than
50%, the BSN is called ‘dilated’ [18].

As will be shown later in Section 2, the proposed BSN controller
inherently has a low-pass feature which can be used to cut off
learning at high frequencies and thereby ensure error convergence.
Though a BSN with dilation 1 (50% overlap) was found to be very
easy to implement and analyze, such a BSN did not provide large
enough attenuation to cut off the learning at high frequencies.
A BSN with dilation 2 (75% overlap) was found to be capable of
meeting this requirement satisfactorily. Though BSNs with higher
dilations can result in even better performance, they are much
more complex to implement and hence were not used.

Fig. 1. Block diagram of the proposed BSN controlled power converter system.
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