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a b s t r a c t

The main aim of this paper is to investigate the exponential stability of the Euler method and the semi-

implicit Euler method for stochastic delay Hopfield neural networks. The definition of MS-stability and

GMS-stability of these two numerical methods is introduced. Under the conditions which guarantee the

stability of the analytical solution, the Euler scheme is proved to be MS-stable and the semi-implicit

scheme is to be MS-stable and GMS-stable. An example is given for illustration.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic delay Hopfield neural networks have been widely
used to model many of the phenomena arising in such areas as
associative content-addressable memories, pattern recognition
and optimization. One of the important and interesting problems
in the analysis of stochastic delay Hopfield neural networks is
their exponential stability. The exponential stability of stochastic
delay Hopfield neural networks has been studied by many authors
and we here mention Blythe et al. [1], Zhou and Wan [2], Wan and
Sun [3], Sun and Cao [4], Wang et al. [5] and references therein.

Most of stochastic delay Hopfield neural networks, similar to
stochastic delay differential equations, do not have explicit
solutions. Thus appropriate numerical approximation schemes
such as the Euler scheme are needed to apply stochastic delay
Hopfield neural networks in practice or to study their properties.
To the best of our knowledge, there has been little work on the

exponential stability of numerical methods for stochastic delay
Hopfield neural networks, although there are many papers
concerned with the numerical solutions to stochastic delay
differential equations [6–10].

Motivated by the importance to study the numerical problem of
stochastic delay Hopfield neural networks and the issue of their
global stability for strong solutions to stochastic delay Hopfield
neural networks, in this paper, we consider the stability of numerical
solutions to stochastic delay Hopfield neural networks of the form
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where i¼ 1;2; . . . ;n, tZ0. In the above model, nZ1 is the number
of neurons in the network, xi is the state variable of the i th neuron at
time t, fj and gj denote the output of the j th unit at time t and t � tj,
respectively, si are continuous functions, ci represents the rate with
which the i th unit will reset its potential to the resting state in
isolation when discounted from the network and the external
stochastic perturbation, and is a positive constant; aij and bij weight
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the strength of the j th on the i th unit, tj is the transmission delay
which is a nonnegative constant.

In this paper, both the Euler method and the semi-implicit
Euler method are considered. The main aim of this paper is to
show that the Euler method applied to Eq. (1) is MS-stable, and
the semi-implicit Euler method applied to Eq. (1) is MS-stable and
GMS-stable under the conditions which guarantee the stability of
the analytical solution. Our work differs from Refs. [11–14] in that:
(1) two numerical schemes are considered; (2) tj may be different.

The paper is organized as follows. In Section 2, we shall
introduce some notations and hypotheses of Eq. (1), and give
some properties of its analytical solution. In Section 3, we shall
prove the MS-stability of the Euler numerical solution to Eq. (1). In
Section 4, we shall prove the MS-stability and GMS-stability of the
semi-implicit Euler numerical solution to the special form of
Eq. (1). An example is provided to illustrate our theory in Section
5. Conclusion is given in Section 6.

2. Analysis of analytical solution

Throughout this paper, we let ðO;F ;PÞ be a complete
probability space with a filtration fF tgtZ0 satisfying the usual
conditions (i.e., it is increasing and right continuous while F 0

contains all P-null sets). xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ
T . Let Cð½�t;0�;RnÞ be

the family of continuous function f from ½�t;0� to Rn with the
norm JfJ¼ sup�tr tr0 jfðtÞj, while j � j is the Euclidean norm in
Rn. Denote by Cb

F0
ð½�t;0�;RnÞ the family of all bounded

F 0�measurable Cð½�t;0�;RnÞ�valued random variables. We
assume x¼ fxðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞ

T
gACb

F0
ð½�t;0�;RnÞ.

In order to obtain the stability of Eq. (1), We impose the
following standing hypotheses:

(H1) fjð0Þ ¼ gjð0Þ ¼ sið0Þ ¼ 0. fj, gj and si satisfy the global
Lipschitz condition with Lipschitz constants aj40, bj and Li40,
respectively.

Under the above assumptions, Eq. (1) has a unique strong
solution xðtÞ ¼ xðt; xÞ on tZ0 and xðtÞ is a measurable, sample-
continuous and F t�adapted process. This result can be found in
[15]. Clearly, Eq. (1) admits the trivial solution x� 0.

For the purpose of establishing the stability condition of
Eq. (1), the following result is required.

Lemma 1. If Eq. (1) satisfies the conditions (H1) and

(H2) For i¼ 1;2; . . . ;n,
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Then Eq. (1) is exponentially stable in mean square. That is, there

exists a pair of positive constants l and M0 such that for any x

Ejxðt;xÞj2rM0e�ltEjxj2; tZ0:

The proof of this lemma is found in [2].

3. Stability of Euler numerical solution

For Eq. (1), the discrete Euler approximate solution is defined by
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where i¼ 1;2; . . . ;n, h ð0oho1Þ is a stepsize which satisfies
tj ¼mjh for a positive integer mj, and tk ¼ kh, yk

i is an approxima-
tion to xiðtkÞ, if tkr0, we have yk

i ¼ xiðtkÞ. Moreover, the increments

DWk
i ¼Wiðtkþ1Þ �WiðtkÞ are normal distribution with mean zero

and variance h.
Suppose that the following condition is satisfied.
(H3)
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Definition 2. Under the conditions (H1)–(H3), a numerical
method is said to be mean square stable (MS-stable), if there
exists a h040, such that any application of the method to Eq. (1)
generates numerical approximations yk

i , which satisfy

lim
k-1

Ejyk
i j

2 ¼ 0; i¼ 1;2; . . . ;n

for all hAð0;h0Þ with h¼ tj=mj.

Now we are in position to give one of the main results of this
paper.

Theorem 3. Under the conditions (H1)–(H3), the Euler method

applied to Eq. (1) is MS-stable.

Proof. From Eq. (3) we have
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Squaring both sides of Eq. (4), we have
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It follows from the inequality 2abxyr jabjðx2þy2Þ that
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