
A general kernelization framework for learning algorithms based on
kernel PCA

Changshui Zhang, Feiping Nie �, Shiming Xiang

The State Key Lab of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Automation, Tsinghua

University, Beijing 100084, PR China

a r t i c l e i n f o

Article history:

Received 24 March 2009

Received in revised form

16 August 2009

Accepted 23 August 2009

Communicated by D. Xu
Available online 6 October 2009

Keywords:

Kernel method

Learning algorithm

Kernel PCA

Two-stage framework

a b s t r a c t

In this paper, a general kernelization framework for learning algorithms is proposed via a two-stage

procedure, i.e., transforming data by kernel principal component analysis (KPCA), and then directly

performing the learning algorithm with the transformed data. It is worth noting that although a very

few learning algorithms were also kernelized by this procedure before, why and under what condition

this procedure is feasible have not been further studied. In this paper, we explicitly present this

kernelization framework, and give a rigorous justification to reveal that under some mild conditions, the

kernelization under this framework is equivalent to traditional kernel method. We show that these mild

conditions are usually satisfied in most of learning algorithms. Therefore, most of learning algorithms

can be kernelized under this framework without having to reformulate it into inner product form, which

is a common yet vital step in traditional kernel methods. Enlightened by this framework, we also

propose a novel kernel method based on the low-rank KPCA, which could be used to remove the noise in

the feature space, speed up the kernel algorithm and improve the numerical stability for the kernel

algorithm. Experiments are presented to verify the validity and effectiveness of the proposed methods.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Kernel methods [1–4] have attracted great interest in the past
decades. The reason is largely because that kernel methods show
better performance in most real-world applications in pattern
recognition, computer vision, data minging, and so on. Many
linear learning algorithms have been successfully kernelized
[5–14], and most of which are implemented by making use of
the kernel trick. In order to use the kernel trick, the output of the
learning algorithm should be reformulated into inner product
form, and then the nonlinear map from the original space to the
high or even infinite dimensional feature space could be implicitly
implemented by the kernel function.

Kernel principal component analysis (KPCA) [15], which is a
kernel method for principal component analysis (PCA) [16], is one
of the earliest kernel methods with the kernel trick. Later, the
kernelization extensions for many linear algorithms have been
achieved along the same outline of KPCA for PCA. However, when
the output of a learning algorithm is difficult to be reformulated
into the inner product form, the kernel trick could not be directly
used to kernelize the learning algorithm.

In this paper, KPCA is viewed as a data transformation
procedure. We propose a general kernelization framework for
learning algorithms via this transformation procedure, i.e.,
transforming data by kernel principal component analysis (KPCA),
and then directly performing the learning algorithm with the
transformed data. Although a very few learning algorithms were
also kernelized by this procedure before [17–19], why and under
what condition this procedure is feasible have not been further
studied. In this paper, we explicitly present this kernelization
framework, and give a rigorous justification to reveal that under
some mild conditions, the kernelization under this framework is
equivalent to traditional kernel method. We will see that these
mild conditions are usually satisfied by most of the learning
algorithms, such as a large family of subspace learning related
algorithms, distance metric learning, clustering algorithm, etc.
Therefore, most of learning algorithms can be kernelized under
this framework. Note that this framework introduces a KPCA
procedure, so it need additional calculation to perform KPCA.
However, as KPCA is a widely used algorithm in many applica-
tions, and once the KPCA procedure has been performed, we can
directly perform many linear learning algorithms to implement
the respective kernel algorithms simultaneously. Therefore, by
virtue of this framework, we do not need the extra development of
the kernel algorithms for these linear algorithms respectively,
which is very convenient especially when we need to test a large
number of linear algorithms and their kernel ones at the same
time.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2009.08.014

� Corresponding author. Tel.: +86 10 627 96 872; fax: +86 10 627 86 911.

E-mail addresses: zcs@mail.tsinghua.edu.cn (C. Zhang), feipingnie@gmail.com

(F. Nie).

Neurocomputing 73 (2010) 959–967

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.08.014
mailto:zcs@mail.tsinghua.edu.cn
mailto:feipingnie@gmail.com
mailto:feipingnie@gmail.com

ARTICLE IN PRESS

This two-stage kernelization framework provides us with a
new perspective on the kernel method for a learning algorithm.
Usually, one cannot discern the distribution and behavior of the
data in the kernel space due to the implicit map. However, we can
turn to see the distribution of the data after the KPCA
transformation, since the behavior of the data in the kernel space
is equivalent to the behavior of the data after the KPCA
transformation. This framework also gives us a mechanism to
implement the kernel method for a learning algorithm with more
flexibility. Enlightened by this two-stage framework, we propose a
new kernel method for learning algorithms based on the low-rank
KPCA. In comparison with the full-rank KPCA based kernel
method, the low-rank KPCA based kernel method has several
advantages. For example, it could remove the noise in the feature
space, speed up the kernel algorithm and improve the numerical
stability for the kernel algorithm.

The rest of this paper is organized as follows: In Section 2, we
revisit KPCA in details. In Section 3, we give the definition of the
full-rank PCA and the full-rank KPCA, and then propose the
general kernel method for learning algorithms based on the full-
rank KPCA. In Section 4, we give some remarks on the general
kernel method and propose a new kernel method for learning
algorithms based on the low-rank KPCA. Some typical learning
algorithm examples which satisfy the mild conditions are given in
Section 5. In Section 6, we present the experiments to verify the
validity of the general kernel method and the effectiveness of the
proposed low-rank kernel method. Finally, we conclude this paper
in Section 7.

2. Kernel PCA revisited

Kernel PCA [15] is a nonlinear extension to PCA with the kernel
trick. In order to use the kernel trick, the solution to PCA should be
reformulated into inner product form first.

Given the training data fx1; x2; . . . ; xng; xiARd, we denote the
mean of the training data by x ¼ ð1=nÞ

P
i xi, the training data

matrix by X¼ ½x1; x2; . . . ; xn� and the centralized training data
matrix by X ¼ ½x1 � x; x2 � x; . . . ; xn � x�.

Define a centralization matrix by L¼ I� 1=n11T, where I is an
n� n identity matrix, and 1ARn is a column vector in which all
the elements are equal to one. It can be easily verified that

X ¼XL ð1Þ

Therefore, the covariance matrix of the training data can be
written as

C¼
1

n
XLðXLÞT ð2Þ

PCA extracts the principal components by calculating the
eigenvectors of the covariance matrix C.

Lemma 2.1 (Horn and Johnson [20]). Given two matrices AARn�d

and BARd�n, then AB and BA have the same nonzero eigenvalues.

For each non-zero eigenvalue, if the corresponding eigenvector of AB
is v, then the corresponding eigenvector of BA is u¼ Bv.

According to Lemma 2.1, the eigenvectors of C can be calc-
ulated from the eigenvectors of M¼ ðXLÞT XL¼ LXT XL. Denote
the k-th largest eigenvalue of M by lk, and the corre-
sponding eigenvector by vk, then the k-th largest eigenvalue
of C is lk, and the corresponding eigenvector is uk ¼XLvk.
Therefore, the k-th principal direction calculated by PCA is

~uk ¼ uk=JukJ¼XLvk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT

k Mvk

q
. For any data xARd, the k-th

principal component is

yk ¼ ~uT
k ðx� xÞ ¼

vT
k LXT
ðx� xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vT
k Mvk

q ð3Þ

Instead of doing PCA in the input space, kernel PCA performs
PCA in a mapped high-dimensional inner product space F . The
map f : Rd-F is nonlinear and is implicitly implemented via
kernel function

Kðx; x0Þ ¼fðxÞTfðx0Þ ð4Þ

The kernel function, K : Rd
�Rd-R may be any positive kernel

satisfying Mercer’s condition [21,5]. For instance, the frequently
used one is the radial basis function (RBF) kernel defined by

Kðx; x0Þ ¼ exp �
Jx� x0J2

s2

()
ð5Þ

The mapped space F is also called feature space. For an algorithm
that can be expressed in terms of inner product, the algorithm can
be also performed in the feature space using the kernel trick.
Fortunately, PCA is such an algorithm. From Eq. (3) we can see the
output of PCA can be calculated solely by inner product. Therefore,
in KPCA, for any data xARd, the k-th principal component is

yk ¼
vT

k LfðXÞT ðfðxÞ � fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vT

k Kvk

q ð6Þ

where f ¼ ð1=nÞ
P

i fðxiÞ, fðXÞ ¼ ½fðx1Þ;fðx2Þ; . . . ;fðxnÞ�, K¼
LfðXÞTfðXÞL and vk is the k-th largest eigenvector of K.

3. Kernel method for learning algorithms based on full-rank
KPCA

In this section, we propose a general kernel method for
learning algorithms based on full-rank KPCA. First we give the
definition of the full-rank PCA and the definition of the full-rank
KPCA.

Suppose the training data for a learning algorithm are
fx1; x2; . . . ; xng; xiARd. We denote the training data matrix
by X¼ ½x1; x2; . . . ; xn�ARd�n, the mean of the training data by
x ¼ ð1=nÞ

P
ixi, and the centralized inner product matrix by

M¼ LXT XL. Corresponding, in the feature space, we denote the
training data matrix by fðXÞ ¼ ½fðx1Þ;fðx2Þ; . . . ;fðxnÞ�, the mean of
the training data by f ¼ ð1=nÞ

P
i fðxiÞ, and the centralized kernel

matrix by K¼ LfðXÞTfðXÞL.

Definition 3.1 (full-rank PCA). For the training data matrix X,
suppose the rank of the centralized inner product matrix M is r. If
we extract the first r principal components of PCA, we say we have
performed the full-rank PCA.

Suppose the eigen-decomposition of matrix M is

M¼ ½a;b�
K 0

0 0

� �
½a;b�T ð7Þ

where K is the diagonal matrix with the diagonal elements being
the non-zero eigenvalues of M, the columns of a is the
corresponding unit eigenvectors of the non-zero eigenvalues,
and the columns of b is the corresponding unit eigenvectors of the
zero eigenvalues. We call M¼ aKaT is the full-rank eigen-
decomposition of matrix M.

It can be derived that the projection matrix of the full-rank PCA
is

W¼XLaK�1=2
ð8Þ

C. Zhang et al. / Neurocomputing 73 (2010) 959–967960

Download English Version:

https://daneshyari.com/en/article/408684

Download Persian Version:

https://daneshyari.com/article/408684

Daneshyari.com

https://daneshyari.com/en/article/408684
https://daneshyari.com/article/408684
https://daneshyari.com

