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a b s t r a c t

Graph embedding is a general framework for subspace learning. However, because of the well-known

outlier-sensitiveness disadvantage of the L2-norm, conventional graph embedding is not robust to

outliers which occur in many practical applications. In this paper, an improved graph embedding

algorithm (termed LPP-L1) is proposed by replacing L2-norm with L1-norm. In addition to its robustness

property, LPP-L1 avoids small sample size problem. Experimental results on both synthetic and real-

world data demonstrate these advantages.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Locality, known as neighborhood preserving property, is of
fundamental importance in both nonlinear and linear dimension-
ality reduction methods. The underlying idea behind the locality/
neighborhood preserving algorithms is that close points in high
dimensional space remain close and similarly co-located w.r.t. to
one another in the low dimensional space. Such an idea of think

globally and fit locally has been applied in many computer vision
applications [21,13,5].

Among much previous efforts, representative nonlinear di-
mensionality reduction algorithms, which have locality preser-
ving property, are locally linear embedding (LLE) [20], Laplacian
Eigenmap [1], Isomap [25], etc. While, some linear versions of
Laplacian Eigenmap are locality preserving projection (LPP) [7],
Laplacianfaces [8], marginal Fisher analysis (MFA) [26], maximum

margin projection (MMP) [9]. Linear versions of LLE include
neighborhood preserving projection (NPP) [19], neighborhood pre-

serving embedding (NPE) [6], nonlinear data projection on non-

Euclidean manifolds [14], etc. Compared to the think globally and fit

locally algorithms, traditional principal component analysis (PCA)
[28] and variants of PCA [16,22,17,18] and multidimensional
scaling (MDS) are fit globally subspace algorithms. PCA and MDS
can successfully discover low dimensional manifold on the
premise of Gaussian data. LLE, Laplacian Eigenmap, and Isomap
can work for non-Gaussian and nonlinear data structure and their
linear versions are usually superior to PCA and MDS. All of these

locality preserving algorithms are easy to implement and are not
prone to local minima. Recent research showed that the above
algorithms are instances of a general dimensionality reduction
framework: Graph Embedding [26].

In this paper, we focus on improving LPP, one of the most
important locality preserving based graph embedding. The idea of
the enhanced LPP can be easily generalized to other graph
embedding algorithms. LPP has been successfully used in image
retrieval, face recognition, and scientific visualization. However,
LPP as well as Laplacian Eigenmap and LLE are sensitive to outliers
which corrupt the training data [2]. LPP as well as Laplacian
Eigenmap can be treated as a graph embedding algorithm [26].
The objective of LPP is to minimize the weighted sum of squared
distances between any two points. Though the edge weights have
positive contribution to resisting outliers, the employment of
L2-norm distance weakens its robustness to outliers. Because of
the L2-norm distance, large distance dominates the sum. So the
resulting subspace is biased.

To improve the robustness of LPP against outliers, we propose
to employ L1-norm based distance to measure the dissimilarity
between pairs of points. It has been shown that with the presence
of outliers the L1-norm performs better than L2-norm [4]. We
named the robustified LPP LPP-L1. The optimization process of
LPP-L1 is similar to that of PCA-L1 [10]. But LPP-L1 has many
advantages over PCA-L1. PCA-L1 is a L1-norm based PCA which
removes the absolute value operator by introducing a polarity
function and updates the basis vector by weighted sum of
residuals of the training data. The merits of LPP-L1 are as follows:

(1) LPP-L1 is more robust than LPP against outliers;
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(2) for high-dimensional data, LPP always encounters small
sample size problem which makes the generalized eigende-
composition problem of LPP unstable. LPP-L1 needs not to
deal with eigenvalue computation and so can avoids the small
sample size problem; and

(3) compared to PCA-L1, for nonlinear manifold, LPP-L1 can
remain the nonlinear structure in low-dimensional subspace.

In this paper, vectors are denoted as lower case bold roman
letters such as u and ui, and all vectors are assumed to be column
vectors. The subscript i of ui indexes the number of the vector. But
the subscript i is omitted when the index number is not explicitly
specified. In that case, u is used rather than ui. Uppercase bold
roman letters, such as U, denote matrices.

The rest of this paper is organized as follows: Section 2 gives an
introduction to LPP and PCA-L1. We present the proposed method,
LPP-L1, in Section 3. Section 4 gives experimental results. Section 5
concludes the paper.

2. LPP and PCA-L1

The proposed LPP-L1 is a robust version of LPP and inspired by
PCA-L1. Both LPP and PCA-L1 are described briefly in this section.

2.1. LPP

LPP is a famous linear subspace learning algorithm [7]. In
essence, LPP is a linear approximation of the nonlinear Laplacian
Eigenmap [1]. Laplacian Eigenmap can only map known training
data while LPP by using linear transformation matrix can easily
map any new data points.

Given a training matrix X¼ ½x1; . . . ;xN �ARn�N with each

training point xiARn�1. As other subspace learning algorithms,
LPP uses the obtained transformation matrix U¼ ½u1; . . . ;

ur �ARn�r with the basis vector uiARn�1 to map the high-

dimensional points xARn�1 to low-dimensional point yARr�1:

y¼UT x: ð1Þ

LPP differs from other methods in its criterion for computing the

optimal basis vector uARn�1:

u¼ argmin
u

f ðuÞ ¼ argmin
u

XN

i;j

ðuT xi � uT xjÞ
2sij; ð2Þ

s:t:uT XDðuT XÞT ¼ 1;

where sij measures the similarity of xi and xj, D is a diagonal

matrix with its element Dii ¼
P

jsij. A frequently used similarity is

heat kernel [1,7]:

sij ¼ exp �
Jxi � xjJ

2
2

t

 !
; ð3Þ

where t is a pre-defined parameter. In (3) the similarity sij

monotonously increases with the decrease of the distance
between xi and xj. Hence, sij incurs a heavy penalty if neighboring

points xi and xj are mapped far apart [7]. The net effect of

minimizing the objective function is locality preserving, i.e. if xi

and xj are close then uT xi and uT xj are close as well [7]. As stated

in [26], for larger similarity between samples xi and xj, the

distance between uT xi and uT xj should be smaller to minimize the

objective function. Likewise, smaller similarity between xi and xj

should lead to larger distances between uT xi and uT xj for

minimization [26].

It is worth noting that the value of sij is nonzero only if xi and xj

are neighbors. Therefore LPP adopts the ‘‘thinking globally but fit
locally’’ strategy [21] similar to LLE.

Let sij constitutes a weight matrix S. The Laplacian matrix L is
then formed by subtracting S from D:

L¼D� S: ð4Þ

The optimization problem of (2) can be reduced to a generalized
eigendecomposition problem [7]:

XLXT u¼ lXDXT u: ð5Þ

When XDXT in (5) is singular, original LPP is unstable. That it is
caused by the so called small sample size problem.

2.2. PCA-L1

LPP-L1 is a robustified LPP. But the optimization process is
similar to that of PCA-L1. The objective of PCA-L1 is to maximize
the L1-norm variance f ðuÞ in feature space:

f ðuÞ ¼ JuT XJ1 ¼
XN

i ¼ 1

juT xij; ð6Þ

subject to

JuJ2 ¼ 1; ð7Þ

where J � J1 and J � J2 denote L1 norm and L2 norm, respectively.
One of the novelties of PCA-L1 is to convert sum of the absolute

values in (6) into an ordinary sum. This is done by introducing a
polarity function pi:

pi ¼
1 if uT xiZ0

�1 if uT xio0
:

(
ð8Þ

Armed with this polarity function, Eq. (6) can be written as

f ðuÞ ¼
XN

i ¼ 1

juT xij ¼
XN

i ¼ 1

piu
T xi: ð9Þ

The maximization process is performed in an iterative manner:

uðtÞ ¼

PN
i ¼ 1 piðt � 1Þ

J
PN

i ¼ 1 piðt � 1ÞxiJ2

xi: ð10Þ

where the polarity function at time t¼ 1 is chosen so that

piðt � 1Þ ¼
1 uðt � 1ÞT xiZ0

�1 uðt � 1ÞT xio0
:

(
ð11Þ

The solution of PCA-L1 is guaranteed to reach a local
maximum. Refer to [10] for the proof. It has been shown that
PCA-L1 converges faster than R1-PCA [4]. As can be seen from
(10), the computation of PCA-L1 is as simple as weighted sum of
the training samples and the weight is either 1 or �1.

3. L1-norm based LPP

3.1. Objective Function of LPP-L1

Despite its advantages, LPP is sensitive to outliers in some
degree. Each item ðuT xi � uT xjÞ

2 of the sum in (2) is the squared
distance in embedded subspace. If there are outliers, the square
will make the optimization process to place much emphasis on
this squared distance between two outliers or between one
regular point and an outlying point to some extent. Though the
similarity sij, which monotonously decreases with the increase of
the squared distance, is helpful for suppressing the negative effect
of outliers, the quadratic distance weaken the robustness. As a
result, the solution is biased to fit outliers.
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