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Abstract

In this work we study the basic competitive and cooperative mechanisms of neural activity in the context of a two-alternative free-

choice eye-movement task, as a function of the expectation of reward. We use a simplified version of the protocol followed by Platt and

Glimcher [Neural correlates of decision variables in parietal cortex, Nature 400 (1999) 233–238], in which each choice is associated with

independent underlying reward schedules, and explicitly model it using a biophysically realistic network of integrate-and-fire neurons

that forms a categorical choice from the expected gain contingencies, via a simple bias mechanism. The model accounts for several

experimental findings, such as the gain-modulated firing activity observed by Platt and Glimcher and the matching law.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years the neural signatures that encode
behavioral value have been identified, opening the possi-
bility to investigate decision-making at the physiological
level. In this work we study the basic competitive and
cooperative mechanisms that underlie the neural activity
correlated with the decision-making process in primates. In
particular, we model the dependence of neural activity on
the expectation of reward associated with the eye-move-
ment response performed by the monkey. To achieve this,
we explicitly model the processes occurring at the level of
AMPA, NMDA and GABA synapses using a cortical recurrent
network of integrate-and-fire neurons. Due to the rich
phenomenology of the spiking dynamics, a preliminary
analysis of the dynamical regimes accessible to the system
is done. This analysis consists in exploring the stationary
attractors in the relevant parameter space via a mean-field
reduction consistent with the underlying synaptic and

spiking dynamics [4]. Once the regimes of operation of the
network are characterized and the corresponding para-
meter ranges revealed, both the non-stationary dynamical
behavior, as measured in neuronal recording experiments,
and the asymptotic stationary regimes are studied via the
full simulation of the spiking network.

2. Behavioral task

In our simulations we have used a simplified version of
one of the protocols used by Platt and Glimcher [5]. In the
task, while the subject is keeping his gaze aligned to the
fixation point, two eccentric stimuli are illuminated. After
some time, the extinction of the central stimulus instructs
the subject to look at either of the two eccentric stimuli.
The expected gain associated to each stimulus is manipu-
lated by delivering different amounts of juice to the
monkey. In this sense the estimation of value made by
the subject can be controlled externally. The expected gain
for each response is then varied across blocks of trials to
test whether neural activity in lateral intraparietal (LIP) area
is correlated with subjective value. The frequency with
which the animal chooses each response is used as a
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behavioral readout of the subjective value of each option.
Platt and Glimcher explicitly proved that subjective value
was represented by the firing activity of LIP neurons. They
also observed the ‘matching law’ in action, giving a linear
dependence of the probability of a given choice on the
reward bias.

3. Computational model

Our network model is composed of a pair of neural
excitatory ‘selective’ populations (or pools, labeled A and
B) with strong recurrent synaptic self-couplings and weak
mutual excitation. In addition, A and B are reciprocally
connected to an inhibitory population and to an ‘un-
selective’ excitatory population; all populations receive
external excitatory synaptic inputs coding for stimuli and
other external influences, including background sponta-
neous activity (see Fig. 1 and [1,6] for the general
theoretical setting). A and B can be ‘selective’ in that they
react to stimuli and can engage in competition due to
shared inhibition, such that even for equal or very similar
inputs to A and B the network can exhibit high A firing
activity with suppressed B activity (which will be taken to
encode ‘decision A’) or the reverse (‘decision B’) [3,7].

In absence of stimuli, every cell in the module receives
external input modeled as a Poisson train with rate

nnoise ¼ noutNext�3Hz� 800 ¼ 2:4 kHz, where nout is the
average firing rate of any neuron outside the module and
Next is the number of external synapses. The presence
of a stimulus is implemented by an increase of the
external input perceived by every selective neuron. So,
during stimulus presentation a selective neuron, either
in A or in B, receives a Poisson spike train of rate
next ¼ nnoise þ l, where l represents the intensity of the
stimulus. The expectation of reward is implemented
extrinsically; we assume that the decision-making process
is triggered by an external signal coming from a module
that stores the representation of value. The value signal
is added to the total background noise perceived by
each neural population. Even though this is an over-
simplified model, it can shed light on how basic reward-
biased decision-making mechanisms work in a network
model.

3.1. Mean-field parameter exploration

Spiking simulations are too computationally expensive
for an extensive search in the parameter space. Mean-field
approximations allow to compute the attractors to which
the network would converge in the limit of an infinite
number of neurons, and require much less computational
load. The mean-field approximation we used was that
derived by Brunel and Wang [2]. The goal of these
explorations was to find the number of stable network
states (attractors) that coexist for a given set of parameters.
We can distinguish four different stable network states: in
the spontaneous state (S) the firing rates of the two
populations are comparable and low (nA ’ nB�3Hz); in
the mixed state (M) the activity of the two populations is
also comparable, but substantially higher than typical
spontaneous activity. The other two states are the selective

states (A and B), in which one of the two populations
shows elevated activity while the other population fires at a
very low (suppressed) rate. In a selective state the ratio of
the high firing rate over the suppressed firing rate,
nhigh=nlow, is typically higher than 10. If the stable states
A and B represent the two categorical options the network
has to choose from, the mixed state M could be an
interesting dynamic option for describing an ‘undecided’
state, possibly corresponding to unusually long decision
times.
The network shows multistable behavior: there may

coexist several stable states given a fixed set of parameters.
The set of stable states that the network can sustain for
some values of the parameters determines the phase or
regime of operation of the system. In this system,
the relevant parameters are the recurrent potentiation
weight wþ, and the amplitude of the external signal
received by each neuron in a pool: nAext ¼ nnoise þ lþ lAval,
nBext ¼ nnoise þ lþ lBval. It is convenient to define l̄ � lþ
ðlAval þ lBvalÞ=2 and Dl � ðlAval � lBvalÞ=2. Fig. 2 summarizes
the regimes of operation of the network found at each
point in the parameter space.
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Fig. 1. Architecture of the network. The module consists in N neurons

and is divided in two major groups: one inhibitory and one excitatory

population, with NI and NE neurons each (N ¼ NE þNI). Within the

excitatory pool there are two types of populations: two selective pools A

and B, each constituted by fNE neurons (f ¼ 0:15), and one non-selective

population, formed by all excitatory neurons not belonging to a selective

pool (ð1� 2f ÞNE). The firing rate activity of the two selective pools encode

the decision to make. wþ are the synaptic weights connecting neurons

within the same selective pool, whereas w� denotes the connection weight

between neurons in different selective pools and from non-selective to

selective neurons. All other possible connections have weight 1 (baseline

strength). To assure that the overall recurrent excitatory synaptic drive in

the spontaneous state remains constant as wþ is modified, w� is set to

1� f ðwþ � 1Þ=ð1� f Þ. The signals associated to the stimuli are denoted by

l and the signal carrying value information is lA;Bval (one per pool). Every

neuron in the network receives a background Poisson spike train of rate

2:4 kHz.
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