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Abstract

Associative memory in cortical circuits has been held as a major mechanism for content-addressable memory. Hebbian synapses

implement associative memory efficiently when storing sparse binary activity patterns. However, in models of sensory processing,

representations are graded and not binary. Thus, it has been an unresolved question how sensory computation could exploit cortical

associative memory.

Here we propose a way how sensory processing could benefit from memory in cortical circuitry. We describe a new collabo-

rative method of rank coding for converting graded stimuli, such as natural images, into sequences of synchronous spike volleys.

Such sequences of sparse binary patterns can be efficiently processed in associative memory of the Willshaw type. We evaluate

storage capacity and noise tolerance of the proposed system and demonstrate its use in cleanup and fill-in for noisy or occluded visual

input.
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1. Introduction

The microcircuitry of the cerebral cortex shows extensive
recurrent connectivity between pyramidal cells in layer II/
III. These connections are plastic and have been shown to
obey a temporally asymmetric Hebbian learning rule [2].
Associative memories are computational models that
describe how cortical circuits may exploit these plastic
connections to perform memory operations. Recently,
physiological experiments in slice have lent support to
these models by showing that activity organizes in
repeatable sequences of activity patterns [7]. Under certain
conditions, neural associative memories can efficiently
store and retrieve large numbers of patterns of neural
activity. These conditions are in particular that the patterns
are binary and sparse, i.e., that the stored patterns share a
low ratio of active cells [17,10,11]. At first glance these

conditions seem ill-suited for sensory processing. Visual
input, for example, when represented by Gabor-type filters,
is graded and nonsparse. However, the recent discovery of
discrete so-called UP states in visual cortex provides at
least indirect evidence that binary and sparse information
processing could be relevant even in early sensory
processing [4]. To date, no biologically plausible memory
model has been proposed that can store large numbers of
chunks of analog raw sensory data, such as images. The
aim of this paper is to propose such a model.
It has been shown that principles of efficient coding [14]

and also faster but suboptimal techniques of signal
representation, such as matching pursuit can sparsify
sensory neural representations. These mechanisms can be
neuronally implemented by lateral inhibition. Matching
pursuit, in particular, has been suggested to convert
sensory input into temporal sequences of spikes [13]. For
efficient processing of sensory information we propose a
combination of a new model of sparse visual coding,
extending the model based on matching pursuit, and sparse
sequence associative memory [1,18].
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2. Image coding

2.1. Matching pursuit for the spike coding of visual input

Perrinet et al. [13] have proposed a model of the visual
cortex based on a method of signal representation known
as matching pursuit. In this model, neurons spike one at a
time, each spike being elicited from the neuron that is most
strongly excited by the sensory input. Neurons that spike
inhibit other cells with similar receptive fields (‘‘explaining
away’’). The representation of visual input by matching
pursuit can be written as

x ¼
Xm�1
n¼0

hrn;Wgn
iWgn
þ rm, (1)

gn ¼ argmaxgn
hrn;Wgn

i, (2)

where W is a set of basis functions, x is the visual input and
rn is the residual after the n:th spike. Eq. (2) indicates that
the neuron gn to spike next will be the one corresponding to
the basis function most similar to the current residual rn.
To determine how many spikes should be used in the
sequence, one can optimize the representation based on a
cost function. We use the function

Eðx; bÞ ¼
1

2

Xm

i¼1

xi �
Xn

j¼1

bjCji

 !2

þ f ðbÞ, (3)

where the first term quantifies the quality of the repre-
sentation b, as generated by matching pursuit; bj ¼P

n:gn¼j hrn;Wgn
i. The second term quantifies the metabolic

cost of the representation. Assuming that each spike is
associated with a fixed metabolic energy cost, we just use
the spike count

f ðbÞ ¼ ykbkL0. (4)

Depending on the choice of the sparseness parameter y this
coding scheme can produce sparse codes. The codes have
few nonzero elements but are not yet binary. They contain
either zeros or analog expansion coefficients b. It has been
demonstrated, however, that the exact analog values are
not needed for faithful reconstruction of visual input. They
may be replaced by mean values from a rank ordered
histogram of coefficients that is averaged over many visual
inputs [12]. Thus, an input pattern in a patch of the visual
field can be coded by a temporal sequence of spikes, where
only the spike order is significant.

2.2. Collaborative rank coding of image fragments

To use spike coding based on matching pursuit in
combination with efficient associative memory, the coding
strategy explained so far has to be extended. In our model
of collaborative rank coding, cortical regions processing
different patches of visual input collaborate to form spatio-
temporal patterns. In our model we assume that an image
is tiled by small nonoverlapping patches in the visual space

that are processed in parallel by sets of neurons in different
regions of primary visual cortex. For each patch, matching
pursuit is used to determine the next spiking neuron. But
spike timing in different patches is not independent as in
the Perrinet model. We include a global, synchronizing
influence which could be realized in the cortex by local
thresholds that are synchronously oscillating [3]. The effect
of this collaborative rank coding is that spikes in different
patches organize into synchronized volleys of spikes. The
number of spikes per volley can be regulated by the degree
of threshold modulation. In our computer model we simply
group the k largest coefficients in the first volley, the
following k largest in the second and so on until less than k

nonzero coefficients remain, at which point the sequence is
truncated. For image number m, we define rm as the index
vector of the nonzero coefficients in b, ordered according
to descending magnitude. We denote by rmj j the cardinality
of nonzero coefficients. The input image xm is then
represented by a sequence of patterns nmðtÞ of length Tm;
t 2 ½1 . . .Tm�:

xmi ðtÞ ¼
1 rmðiÞ 2 ððt� 1Þk; tk�;

0 otherwise;

(
(5)

Tm ¼ bjrmj=kc. (6)

This k-winner-take-all coding strategy implements the
collaborative rank coding.
For reconstruction we form a rank code lookup table

for the analog coefficients, based on the volley index (see
Fig. 1). Comparing the error bars of collaborative and non-
collaborative rank coding in Fig. 1 the collaboration seems
to increase the accuracy of the lookup. An analysis of the
rank code statistics of these coding schemes will be given
elsewhere. Most importantly, the collaborative rank coding
allows for the reconstruction of a stimulus, given only an
joint spike volley sequence and the collaborative rank code
lookup table.
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Fig. 1. Coefficient amplitudes as a function of volley index. Error bars

show one standard deviation. The inset figure is for non-collaborative

rank coding. Note the larger variance for the latter.
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