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This paper proposes a novel method, called two-dimensional local graph embedding discriminant

analysis (2DLGEDA), for image feature extraction, which can directly extract the optimal projective

vectors from two-dimensional image matrices rather than image vectors based on the scatter difference

criterion. In graph embedding, the intrinsic graph characterizes the intraclass compactness and

connects each data point with its neighboring within the same class, while the penalty graph connects

the marginal points and characterizes the interclass separability. The proposed method effectively

avoids the singularity problem frequently encountered in the traditional linear discriminant analysis

algorithm (LDA) due to the small sample size (SSS) and overcomes the limitations of LDA due to data

distribution assumptions and available projection directions. Experimental results on ORL, YALE, FERET

face databases and PolyU palmprint database show the effectiveness of the proposed method.

Crown Copyright & 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Biological recognition has recently attracted wide attention of
the researchers in biometric authentication. In face recognition,
two-dimensional face images are usually transformed into one-
dimensional vectors through column by column or row by row
concatenation. The resulting image vectors of faces usually lead to
a high dimensional image vector space, where it is difficult to
evaluate the covariance matrix accurately due to its large size and
the relatively small number of training samples.

Two of the most fundamental dimensionality reduction
methods are principal component analysis (PCA) [1] and linear
discriminant analysis (LDA) [2]. PCA is a classical feature
extraction and data representation technique widely used in the
areas of pattern recognition and computer vision. PCA aims to find
a linear mapping, which preserves the total variance by maximiz-
ing the trace of feature variance. The optimal projections of PCA is
correspond to the first k-largest eigenvalues of the data’s total
variance matrix. Thus, PCA preserves the total variance by
maximizing the trace of feature variance, but PCA cannot preserve
local information due to pursuing maximal variance. LDA is used
to find the optimal set of projection vectors that maximize the
determinant of the between-class scatter matrix and at the same
time minimize the determinant of the within-class scatter matrix.
But, the dimension of vectors is high and the number of

observations is small, usually tens or hundreds of samples. An
intrinsic limitation of traditional LDA is that it fails to work when
the within-class scatter matrix becomes singular, which is known
as the SSS problems. Furthermore, class discrimination in LDA is
based upon interclass and intraclass scatters, which is optimal
only in cases where the data of each class is approximately
Gaussian distributed, a property that cannot always be satisfied in
real-world applications.

Compared with traditional PCA, 2DPCA [3] extracts image
features directly from two-dimensional image matrices rather
than one-dimensional vectors so the image matrices do not need
to be transformed into vectors. An image covariance matrix is
constructed from the original image matrices for feature extrac-
tion. The optimal projection axes are its orthogonal eigenvectors
corresponding to its largest eigenvalues. Due to the smaller size of
image variance matrix than original variance matrix, 2DPCA
requires less time to extract image features and achieves a better
recognition rate. Li and Yuan [4] extended the idea of using
directly image matrix for LDA and presented 2DLDA. Image
between class variance matrix and image with-class variance
matrix were constructed for 2DLDA. Now (2D)2PCA[5] and
(2D)2FLD[6] have been proposed, in which the authors investi-
gated two-directional two-dimensional projections not only in
row direction but also in column direction to further reduce the
dimension. But, they do not in essence solve the SSS problem since
they both use the Fisher discriminant criterion to find a set of
optimal discriminant vectors.

He et al. [7,8] proposed locality preserving projections (LPP),
which is a linear subspace learning method derived from
Laplacian Eigenmap. Laplacianfaces [9] found an embedding that
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preserves local information, and obtains a face subspace that best
preserves the essential face manifold structure. The essence of
two-dimensional Laplacianfaces [10] is to map nearby points on a
manifold to nearby points in a low dimensional space. They
construct a similarity matrix of data points, and then minimize
the sum of square difference of feature weighted by the similarity
matrix elements. The optimal projection axes best preserve the
local structure of the underlying distribution in the L2 Euclidean
space. From analysis they found that LPP is connected with PCA
and LDA. LPP can be found an embedding that preserves local
information. But if the training samples are insufficient and data
dimension is high especially for image data, LPP cannot be used
directly due to singularity of matrices. Hence, 2DLPP [11,12] was
proposed to directly extract the proper features from image
matrices based on the locality preserving criterion.

Recently, Yan et al. [13] proposed a general dimensionality
reduction framework called graph embedding. In this paper,
marginal Fisher analysis (MFA) was combined locality and class
label information to represent the intraclass compactness and
interclass separability. So, MFA can be viewed as supervised
variants of LPP or as localized variants of LDA since it focus on the
characterization of intraclass separability and interclass locality.
Motivated by the idea of 2DPCA, which operates directly on image
matrix, we develop a novel dimensionality reduction algorithm,
two-dimensional local graph embedding discriminant analysis
(2DLGEDA). In 2DLGEDA, the intrinsic graph is designed to
characterize intraclass compactness, and the penalty graph is
formulated for interclass separability. In the intrinsic graph, a
vertex pair is connected if one vertex is among the k1-nearest
neighbors of the other class and the elements of the pair belong to
the same class. In the penalty graph, for each class, the k2-nearest
vertex pairs in which one element is in-class and the other is out-
of-class are connected. 2DLGEDA has the following advantages:

� The number of available projection directions is much larger
than that of LDA.
� There is no assumption on the data distribution so that it is

more general for discriminant analysis.
� Without a prior assumption on data distributions, the inter-

class margin can better characterize the separability of
different classes than the interclass scatter in LDA.
� The difference criterion can avoid the small sample size

problem occurred in traditional Fisher discriminant analysis.
� Extracting the features becomes simple and more straightfor-

ward. 2DLGEDA directly extracts the optimal projective vectors
from two-dimensional face image matrices rather than vectors,
reserves useful structural information embedding in the
original images.

The rest of the paper is structured as follows: In Section 2 we
introduce 2DPCA, 2DLDA and 2DLPP, In Section 3, we propose the
idea and describe 2DLGEDA in detail. In Section 4, experiments on
ORL, YALE, FERET face databases and PolyU palmprint database
are presented to demonstrate the effectiveness of 2DLGEDA.
Finally, we give concluding remarks and a discussion of future
work in Section 5.

2. Outline of 2DPCA, 2DLDA and 2DLPP

In this section, we repeated three linear projection methods,
which appeared recently in the image recognition literature,
namely 2DPCA [3], 2DLDA [4] and 2DLPP [11].

Suppose o ¼ ½o1;o2; . . . ;od� is an m� d-dimensional matrix,
where oi is a unitary column vector. Let N denotes the total
sample number, and Xi ði ¼ 1;2; . . . ;NÞ denotes an (m�n)-dimen-

sional image matrix. Now the linear methods are to project Xi onto
o by the following linear projection:

Yi ¼ oT Xii ¼ 1;2; . . . ;N ð1Þ

2.1. Two-dimensional PCA

2DPCA seeks a projection direction o which maximizes the
total scatter of the resulting projected samples. Yang et al. [3]
chose the following criterion:

JðoÞ ¼ trðSoÞ ¼ oT Gto ð2Þ

where So is the covariance matrix of the projected feature vectors
of the training samples and trðSoÞ is the trace of So. Let X is the
total mean image and Gt is the image covariance (scatter) matrix:

Gt ¼
1

N

XN

j�1

ðXj � X ÞðXj � X ÞT ð3Þ

Then the optimal projection matrix o ¼ ½o1;o2; . . . ;od� is the
orthonormal eigenvectors of Gt corresponding to the first d largest
eigenvalues.

Yang et al. [3] selected features on two-dimensional images
rather than one-dimensional vectors. Their method reduced
computational complexity greatly compared with traditional
PCA and also improved recognition rate.

2.2. Two-dimensional LDA

2DPCA was aimed at preserving maximal variance, while
2DLDA was aimed at preserving maximal discrimination. Suppose
each of X1;X2; . . . ;XN belongs to one of c classes B1;B2; . . . ;Bc . The
projection direction is chosen as the following:

w ¼ arg max
oT Gbo
oT Gwo

ð4Þ

Gb ¼
1

N

Xc

i�1

NiðX i � X ÞðX i � X ÞT ð5Þ

Gw ¼
1

N

Xc

i�1

X
Xj2Bi

ðXj � X iÞðXj � X iÞ
T

ð6Þ

where X is the total mean image and X i is the mean image of the
ith class Bi. Ni is the number of sample images in the ith class Bi.
The matrix Gb is called between-class image scatter matrix and Go
is called within-class image scatter matrix. The optimal projection
axes are obtained by solving the generalized eigenvalue problem
and they are exactly the orthogonal generalized eigenvectors
corresponding to the first d largest generalized eigenvalues of the
generalized eigenequation:

G�1
o Gbw ¼ lo ð7Þ

2.3. Two-dimensional LPP

Since a node in the nearest-neighbor graph corresponds to an
image Xi, the purpose of 2DLPP is to map a node from (m�n)-
dimensional image space into a n-dimensional Euclidean space,
and to ensure the connected nodes stay as close as possible and
the intrinsic geometry of the data and local structure is preserved
[14]. The similarity matrix Scan be Gaussian weight or uniform
weight of Euclidean distance using k-neighborhood or e-neighbor-
hood, which was defined as

Sij ¼
1; JXi � XjJ

2oe
0; otherwise

(
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