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a b s t r a c t

Morphological associative memories (MAMs) are a special type of associative memory which exhibit

optimal absolute storage capacity and one-step convergence. This associative model substitutes

the additions and multiplications used by other models by computing maximums and minimums.

This type of associative model has been applied to different pattern recognition problems including face

localization and gray scale image restoration. Despite of his power, MAMs have not been applied in

problems that involve true-color patterns. In this paper it is described how a MAM can be applied in

problems involving true-color patterns. Furthermore, a complete study of the behavior of this

associative model in the restoration of true-color images is performed using a benchmark of 14 400

images altered by different type of noises.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The concept of associative memory (AM) emerges from
psychological theories of human and animals learning. These
memories store information by learning correlations among
different stimuli. When a stimulus is presented as a memory
cue, the other is retrieval as a consequence; this means that the
two stimuli have become associated each other in the memory.

An AM can be seen as a particular type of neural network
designed to recall output patterns in terms of input patterns that
can appear altered by some kind of noise. Several associative
models have been described in the last years (refer for example
[1–11]). Most of these AMs have several constraints that limit
their applicability in complex problems. Among these constraints
we could mention their capacity of storage (limited), the type of
patterns (only binary, bipolar, integer or real patterns), robustness
to noise (additive, subtractive, mixed, Gaussian noise, etc.).

A first attempt in formulating useful morphological neural
networks was proposed by Davidson et al. [12]. Since then, only a
few papers involving morphological neural networks have
appeared. Refer for example to [13,14]. In 1998, Ritter et al. [8]
proposed the concept of morphological associative memory
(MAM) and the concept of morphological auto-associative
memory (MAAM). Basically, the authors substituted the outer
product by max and min operations. One year later, the authors

introduced their morphological bidirectional associative mem-
ories [15]. Their properties, compared with Hopfield Associative
model are completely different. For example, they exhibit optimal
absolute storage capacity and one-step convergence in the auto-
associative case.

This type of associative model has been applied to the
reconstruction of gray scale images [9,16–20]. Despite of his
power, it has not been applied to problems involving true-color
patterns; neither a deep study of this associative model under
true-color image patterns has been reported.

In this paper it is described how a MAM can be applied in
problems involving true-color patterns. Furthermore, a complete
study of the behavior of this associative model in the restoration
of true-color images is performed. For this a benchmark of 14 400
images altered by different type of noises is used. In addition, the
potential of the described model is tested in two real scenarios:
image categorization and image restoration.

2. Basics on morphological associative memories

The basic computations occurring in the morphological net-
work proposed by Ritter et al. are based on the algebraic lattice
structure ðR;4;3; þÞ where the symbols 4 and 3 denote the
binary operations of minimum and maximum, respectively.

Let xARn and yARm an input and output pattern, respectively.
An association between input pattern x and output pattern y is
denoted as ðxx; yxÞ, where x is the corresponding association.
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Associative memory W is represented by a matrix whose
components wij can be seen as the synapses of the neural
network. If xx ¼ yx8x¼ 1; . . . ; p then W is auto-associative, other-
wise it is hetero-associative. A distorted version of a pattern x to
be recalled will be denoted as ~x. If when feeding AM W with a
distorted version of xx, output pattern yk is exactly restored, we
say that recalling is robust.

Suppose we are given a couple of xARn and yARm. A MAM
that allows to recalling pattern y given input pattern x is given by:

W¼ y ð�xÞt ¼

y1 � x1 � � � y1 � xn

^ & ^

ym � x1 � � � ym � xn
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since W satisfies the equation W x¼ y as can be verified by the
simple computation

W x¼

_n

i ¼ 1

ðy1 � xiþxiÞ

^
_n

i ¼ 1

ðym � xiþxiÞ

0
BBBBBBB@

1
CCCCCCCA
¼ y ð2Þ

W is called the max product of y and x. We can also denote the
min product of y and x using operator .

For a given set of pattern associations fðxx; yxÞ : x¼ 1; . . . ; kg we
define a couple of pattern matrices ðX;YÞ, where X¼ ðx1; . . . ;xkÞ

and Y¼ ðy1; . . . ; ykÞ. With each pair of matrices ðX;YÞ, two natural
morphological m� n memories WXY and MXY are defined by:

WXY ¼

k̂

x ¼ 1

½yx ð�xxÞ�andMXY ¼
_k

x ¼ 1

½yx ð�xxÞ�: ð3Þ

From this definition it follows that

yx ð�xxÞt ¼ yx ð�xxÞt ð4Þ

which implies that

WXY ryx ð�xxÞt ¼ yx ð�xxÞt rMXY; 8x¼ 1; . . . ; k ð5Þ

In terms of Eqs. (2) and (3), this last set of inequalities implies that

WXY xxr ½yx ð�xxÞt � xx ¼ yx ¼ ½yx ð�xxÞt � xxrMXY ; 8x¼ 1; . . . ; k ð6Þ

or equivalently, that

WXY XrYrMXY X ð7Þ

The complete set of theorems which guarantee perfect recall
and their corresponding proofs are given in [8]. Something
important to mention is that this MAM is robust either to additive
noise or to subtractive noise, not both (mixed noise). While MAM
WXY is robust to subtractive noise, MAM MXY is robust to additive
noise. However, this MAM in not robust to image transformations
which make it inadaptable to be directly applied in object
recognition problems.

3. Behavior of WXY under true-color noisy patterns

In this section a study of the behavior of WXY under true-color
noisy patterns is presented. Two types of experiments will be
performed. In the first case we study the auto-associative version
of WXY , in the second case we study the hetero-associative
version.

For the case of the auto-associative version, first to all, we
verified if the MAAM WXY was capable to recall the complete set
of associations. Then we verified the behavior of WXY using noisy
versions of the images used to train the MAAM. After that, we
performed a study of how the number of associations influence
the behavior of the MAAM WXY .

For the case of the hetero-associative version, first to all, we
verified if the MHAM WXY was capable to recall the complete set
of associations. At last, we verified the behavior of WXY using
noisy versions of the images used to train the MHAM.

The benchmark used in this set of experiments is composed by
14 400 color images of 63�43 pixels and 24 bits in a bmp format.
This benchmark contains 40 classes of flowers and animals. Per
each class, there are 90 images altered with additive noise (0% of
the pixels to 90% of the pixels), 90 images altered with subtractive
noise (0% of the pixels to 90% of the pixels), 90 images altered with
mixed noise (0% of the pixels to 90% of the pixels) and 90 images
altered with Gaussian noise (0% of the pixels to 90% of the pixels).
Fig. 1 shows some images which compose this benchmark.

Although it seems that there is not much difference between
gray level images and true-color images, MAMs are not designed
to cope with multivariable patterns (three channels per pixel)
because they are based on gray level morphological operations.
Instead of training one memory per color channel and then
deciding how to combine the information recalled by each
memory and finally restore the true-color image, we proposed
to transform these three channels in one channel. However, it is
important to notice that if we transform the RGB channels into
one channel by means of computing the average of the three
channels (in other words transform the true-color image into a
gray level image), we will not able to recover the information of
the RGB channels from the average channel.

For that reason, before the MAM WXY was trained, each image
had to be transformed into an image pattern. To build an image
pattern from the bmp file, the image was read from left-right and
up-down; each RGB pixel (hexadecimal value) was transformed
into a decimal value and finally, this information was stored into
an array. For example, suppose that the value of a RGB pixel is
‘‘0x3E53A1’’ (where R=3E, G=53 and B=A1) then by transforming
into its decimal version, its corresponding decimal value will be
‘‘4084641’’. With this new procedure, we avoid training the MAM
with multivariable patterns and we can recover the RGB channels
by transforming the decimal value into its hexadecimal value.

Once trained the associative memory, we proceeded to
evaluate the behavior of the two MAM WXY versions. In order to
measure the accuracy of the MAM we counted the number of
pixels correctly recalled. We reported the percentage of pixels that
can be recalled by the method because we wanted to empathize if
the associative model really restores the altered pixels. However,
for practical image processing purposes, we also used the
normalized mean square error to measure the difference between
the original image and the recalled image.

3.1. Auto-associative version of WXY

It is important to remark that even using true-color patterns
the MAAM WXY was capable to recall the complete set of
associations. However, it is important to analyze the robustness
that the model presents in the presence of noisy patterns.

In the next set of experiments, we study the behavior of the
MAAM WXY under different type of noises. For the case of additive
noise (Fig. 2(a)), we can observe that if only the 2% of the pixels
are altered, the MAAM WXY is capable of correctly recalling only
the 23.6% of the pixels. For the case of mixed and Gaussian noise
(Figs. 2(c and d)), we can observe that if only the 2% of the pixels
are altered, the MAAM WXY is capable of correctly recall only the
29.7% and 46.8% of the pixels, respectively. These percentages
decrease as the number of altered pixels increases. For the case of
subtractive noise (Fig. 2(b)), we can observe that even when the
90% of the pixels are altered, the MAAM WXY is capable of
correctly recall the 77.4% of the pixels.
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