
Progressive interactive training: A sequential neural network ensemble
learning method

M.A.H. Akhand a, Md. Monirul Islam b, K. Murase b,�

a Department of Computer Science and Engineering, Khulna University of Engineering and Technology (KUET), Khulna 9203, Bangladesh
b Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

a r t i c l e i n f o

Article history:

Received 14 February 2008

Received in revised form

2 September 2009

Accepted 5 September 2009

Communicated by G. Thimm
Available online 25 September 2009

Keywords:

Neural network ensemble

Indirect communication

Negative correlation learning

Bagging and boosting

a b s t r a c t

This paper introduces a progressive interactive training scheme (PITS) for neural network (NN)

ensembles. The scheme trains NNs in an ensemble one by one in a sequential fashion where the outputs

of all previously trained NNs are stored and updated in a common location, called information center

(IC). The communication among NNs is maintained indirectly through IC, reducing interaction among

NNs. In this study, PITS is formulated as a derivative of simultaneous interactive training, negative

correlation learning. The effectiveness of PITS is evaluated on a suite of 20 benchmark classification

problems. The experimental results show that the proposed training scheme can improve the

performance of ensembles. Furthermore, the PITS is incorporated with two very popular ensemble

training methods, bagging and boosting. It is found that the performance of bagging and boosting

algorithms can be improved by incorporating PITS with their training processes.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Neural network (NN) ensembles, a combination of several NNs,
are widely used to improve the generalization performance of
NNs. Component NNs in an ensemble are trained for the same or
different tasks, and their outputs are combined in a collaborative
or competitive fashion to produce the output of the ensemble. No
improvement can be obtained when NNs produce similar outputs
because the failure of one NN cannot be compensated by the
others. Both theoretical and empirical studies have revealed that
improved generalization performance can be obtained when NNs
maintain proper diversity in producing their outputs [1–3].

Considerable work has been done to determine the effective
ways for constructing diverse NNs so that the benefit of combining
several NNs can be achieved. There are many ways, such as using
different training sets, architectures and learning methods, one can
adopt to construct diverse NNs. It is argued that training NNs using
different data is likely to maintain more diversity than other
approaches [3–5]. This is because it is the training data on which a
network is trained that determines the function it approximates.
The most popular algorithms that explicitly or implicitly use
different training data for different NNs in an ensemble are the
bagging [4], boosting [5], random subspace method [25] and
negative correlation learning (NCL) [11].

Both bagging and boosting algorithms explicitly manipulate
the original training data to create a separate training set for each
NN in an ensemble. Bagging creates the separate training set by
forming bootstrap replicas of the original training data, while
boosting creates it by the same method but with adaptation [6–8].
An NN is trained independently and sequentially by bagging and
boosting, respectively, without any training time interaction with
other NNs. Since training sets created by bagging and boosting
contain some common information (i.e., training examples), NNs
produce by the two algorithms are not necessarily negatively
correlated owing to the absence of training time interaction
among them [11,20].

Like bagging and boosting, NCL [10–12] does not create
separate training sets explicitly for NNs in an ensemble. The
NCL rather uses a correlation penalty term in the error function of
the NNs by which networks can maintain training time interac-
tion. The training method used in NCL is simultaneous where all
NNs in the ensemble are trained on the same original training
data at the same time. Since NCL provides training time
interaction among NNs, it can produce negatively correlated
NNs for the ensemble. The main problem with simultaneous
training is that NNs in the ensemble may engage in competition
[9]. This is because all NNs are trained on the same training data.
Furthermore, in NCL, the number of NNs in the ensemble needs to
be predefined and the cost of training time interaction is high.

A new scheme, called DECORATE algorithm [13], recently has
been proposed that sequentially trains a relatively large number
of NNs to select several NNs for constructing an ensemble. The

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2009.09.001

� Corresponding author. Tel.: +81776 27 8774; fax: +81776 27 8420.

E-mail address: murase@synaspe.his.fukui-u.ac.jp (K. Murase).

Neurocomputing 73 (2009) 260–273

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.09.001
mailto:murase@synaspe.his.fukui-u.ac.jp<!--ti-->


ARTICLE IN PRESS

algorithm uses a separate training set, which is the union of the
original training data and randomly created artificial data, for
training each NN in the ensemble. The aim of using artificial data
is to create diverse NNs for the ensemble. However, the problem
with DECORATE is that the diversity among NNs is solely
dependent on artificial data. Since the algorithm does not
facilitate training time interaction, NNs produced by it are not
necessarily negatively correlated.

In the present study, we introduce a progressive interactive
training scheme (PITS) that sequentially trains NNs in an
ensemble. The PITS uses an information center (IC) for storing
the output of already trained NNs. An NN gets information about
the task accomplished by the previously trained NN(s) through IC.
The idea of using indirect communication is conceived from the
artificial ant colony system (ACS) which mimics communication
among biological ants via pheromone [14,15]. An individual ant
decides its travelling path based on existing pheromone on the
trail and also it deposits pheromone on its travelling path. The
selection of a travelling path based on the pheromone trail is
found more efficient with respect to direct communication with
other ants [14,15].

The rest of this paper is organized as follows. Section 2
describes PITS in detail and gives the motivations behind the use
of indirect communication. Section 3 explains implementation of
PITS into the bagging and boosting. Section 4 first presents the
experimental results of PITS along with back-propagation (BP) and
NCL; and then compares performance of PITS with those of
AdaBoost (a popular variant of boosting) and DECORATE. This
section also contains experimental analyses between NCL and
PITS; and evaluates performance of bagging and AdaBoost
inducing PITS in their training processes. Finally, Section 5
concludes this paper with some remarks and suggestions for
future directions.

2. Progressive interactive training scheme (PITS) for ensemble

Since we want to develop PITS from NCL [11], this section first
describes NCL, so as to make the paper self contained, and then
explains the formulation of PITS. The NCL algorithm, which is
widely used for training NNs in ensembles, is an extension of the
BP algorithm [19]. The error, ei(n), of a network i for the n-th
training pattern in BP is

eiðnÞ ¼
1
2ðfiðnÞ � dðnÞÞ2; ð1Þ

where fi(n) and d(n) are the actual and desired outputs for the n-th
training pattern, respectively. The problem with this error
function is that an NN in the ensemble cannot communicate with
other NNs during training. Thus the NNs may produce positively
correlated output, when an algorithm trains the NNs on the same
training data. It is known that such positive correlations among
NNs are not suitable for the performance of ensembles [11,12].

The NCL algorithm, therefore, introduces a penalty term in the
error function to establish training time interaction among NNs in
the ensemble. According to [3,10], the error of the i-th NN in the
ensemble for the n-th training pattern is

eiðnÞ ¼
1

2
ðfiðnÞ � dðnÞÞ2þlðfiðnÞ � f ðnÞÞ

X
ja i

ðfjðnÞ � f ðnÞÞ;

¼
1

2
ðfiðnÞ � dðnÞÞ2 � lðfiðnÞ � f ðnÞÞ2; ð2Þ

where f(n) is the actual output of the ensemble for the n-th
training pattern, and l is a scaling factor that controls the penalty
term. The ensemble output is generally obtained by averaging the
outputs of all its component NNs. Thus, for the n-th training

pattern, the output of an ensemble consisting of M networks is

f ðnÞ ¼
1

M

XM
i ¼ 1

fiðnÞ: ð3Þ

Similar to the BP algorithm [19], the NCL algorithm [11] also
requires the partial derivative of the error function to modify the
connection weights of NNs. According to [3], the partial derivative
of ei(n) is

@eiðnÞ

@fiðnÞ
¼ fiðnÞ � dðnÞ � 2lðfiðnÞ � f ðnÞÞ 1�

1

M

� �
: ð4Þ

It is clear from Eq. (4) that NCL needs to know the ensemble
output (i.e., f(n)) for updating the weight of each NN. This means
an NN needs to communicate with all other NNs in the ensemble
for updating its weight. This kind of direct interaction among all
NNs in the ensemble is time consuming, and NNs may engage in
competition during training [9]. In addition, the number of NNs to
construct an ensemble needs to be predefined in NCL.

To reduce training time interaction and competition among
NNs, PITS employs an indirect communication scheme for training
NNs in an ensemble. The indirect communication scheme is found
in many living organisms (e.g., ants). In PITS, NNs in the ensemble
are trained one by one in a progressive manner, where each NN is
concerned with a specific task that has not been solved by any
previously trained NN. The training process of PITS starts with a
single NN. This network is trained for a certain number of training
cycles, and its output is stored in IC after the completion of
training. The proposed PITS then trains the second NN with the
aim of reducing the remaining ensemble error. The second NN
interacts with IC during training to know which parts of the
training data were solved by the first NN. After completing the
training process of the second NN, PITS updates IC by combining
the outputs of the second NN with those of the first NN. This
process will continue until the completion of the training of all
NNs in the ensemble or the problem has been solved. Since PITS
trains NNs in the ensemble one after one, the remaining ensemble
error that NNs try to minimize during their training is different.
This will definitely reduce the competition among NNs. Further-
more, each NN can get information from all the previously trained
NNs only by communicating with the IC. This means the NN can
get the information of all previously trained NNs using a single
fetch operation.

To formulate PITS from NCL, Eq. (4) can written in the
following way when M is large [9]

@eiðnÞ

@fiðnÞ
¼ fiðnÞ � dðnÞ � 2lðfiðnÞ � f ðnÞÞ:

Using the value of f(n) from Eq. (3), the partial derivative can be
written as

@eiðnÞ

@fiðnÞ
¼ fiðnÞ � dðnÞ � 2l fiðnÞ �

1

M

XM
j

fjðnÞ

0
@

1
A

¼ fiðnÞ � dðnÞ � 2l
M � 1

M
fiðnÞ �

1

M

X
ja i

fjðnÞ

0
@

1
A: ð5Þ

In Eq. (5),
P

ja ifjðnÞ is the summed of outputs of all NNs except
the i-th NN in the ensemble for the n-th training pattern. The
proposed PITS stores this combined output in the IC. Let

X
ja i

fjðnÞ ¼
Xi�1

j ¼ 1

fjðnÞ ¼ fICðnÞ:

PITS updates the IC on a pattern by pattern basis for each NN in
the ensemble. The following formulation is used to update the IC,

M.A.H. Akhand et al. / Neurocomputing 73 (2009) 260–273 261



Download	English	Version:

https://daneshyari.com/en/article/408817

Download	Persian	Version:

https://daneshyari.com/article/408817

Daneshyari.com

https://daneshyari.com/en/article/408817
https://daneshyari.com/article/408817
https://daneshyari.com/

