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a b s t r a c t

Uniform filter bank approach can be considered to perform independent component analysis (ICA) for

convolved mixtures. It achieves better separation performance than the frequency domain approach

and gives faster convergence speed with less computational complexity than the time domain

approach. However, when the uniform filter bank approach is applied to natural audio signals,

it provides slower convergence for low frequency subbands and gives inferior separation performance

for high frequency subbands. Owing to spectral characteristics of natural signals, we present a filter

bank approach that employs a Bark-scale filter bank. In the Bark-scale filter bank, low frequency region

is minutely divided, whereas high frequency region has much wider subbands. The Bark-scale filter

bank approach shows faster convergence speed than the uniform filter bank approach because it has

more whitened inputs in the low frequency subbands. It also improves the separation performance as it

has enough data to train adaptive parameters exactly in the high frequency subbands.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Independent component analysis (ICA) is a signal processing
method to express multivariate data as linear combinations of
statistically independent random variables [1–3]. Resorting to
higher order statistics, ICA has achieved impressive performance
in many applications such as speech enhancement, telecommu-
nications, medical signal processing, and feature extraction [4–7].
However, ICA for acoustic mixtures still remains as a challenging
problem due to very complex reverberation involved with real-
world acoustic mixing environments. To deal with convolutive
mixtures of audio signals, some of the ICA approaches for
instantaneous mixtures have been traditionally extended in the
time domain [8] and the frequency domain [9–11]. Filter bank
approaches have been proposed to overcome disadvantages of the
time and frequency domain approaches [12–15]. A filter bank
approach proposed by Park et al. [12,13] does not have
performance limitation of the frequency domain approaches,
since the ICA algorithm in each subband is basically the same as
the time domain approach which is derived from the gradient of
the output entropy. Since adaptive filters process subband signals
at the decimated rate and the required adaptive filter length is
shortened by a factor of the decimation, the number of multi-

plications in a subband is reduced by a factor of 1=M2 where M is
the decimation factor. If the number of subbands is K, computa-
tions are mainly saved by a factor of K=M2 [16,17]. Furthermore,
decimation improves convergence of the subband adaptive filters
because subband signals are more whitened and the adaptive
filter length is shortened [13,16].

However, the uniform filter bank approaches do not consider
some properties of input signals. Fig. 1 shows the time-averaged
power spectral densities of three natural sounds in the frequency
domain which are used in the experiments. The energy of these
signals is concentrated in low frequency region and generally
decreases more steeply in low frequency region than in high
frequency region as the frequency increases. These characteristics
are commonly observed for most of the natural audio signals.
When a uniform filter bank approach deals with such audio
signals, it has more colored input signals in low frequency
subbands than in high frequency subbands. This may result in
relatively slower convergence for adaptation of ICA networks in
the low frequency subbands which contain most of the signal
energy. In addition, since audio signals have most energy in low
frequency region, data in the high frequency subbands may not be
enough to train adaptive filters exactly in the uniform filter bank
approach resulting in inferior separation performance.

Several papers have proposed the use of nonuniform filter
banks for adaptive filtering instead of uniform filter banks
[18–21]. Schulz and Herfet described a mask-based approach,
but it may provide inaccurate results because estimated masks
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specify which time–frequency components should be selected or
not in a binary way [21]. On the other hand, Rutkowski et al.
employed nonuniform filter banks with center frequencies based
on estimation of a fundamental frequency [20]. However, the filter
banks were constructed from the fundamental frequency of a
speech signal with higher energy, so they may not be pertinent to
separate other signals with lower energy. In addition, if the
fundamental frequency is much changed, the filter banks also
need to be changed. In this case, separation filters in subbands
may have errors and should converge to another solution. The
others were applied to system identification problems which use
the least-mean-square (LMS) algorithm [18,19]. In those problems,
rapidly changing spectral regions of the system response have
narrow subbands, whereas smooth regions have wide subbands.
Therefore, a filter bank approach using this nonuniform filter bank
provides more uniform convergence speeds in all subbands than
the uniform filter bank approach. However, it is not suitable for
dealing with natural audio signals because we cannot know a

priori information about their detailed spectral characteristics, in
advance, which correspond to the time-invariant frequency
response of an identified system in the system identification
problems.

In this paper, a Bark-scale filter bank is considered to improve
convergence and separation performance of the filter bank
approach when applied to audio signals. It is known that the
Bark-scale filter bank has narrow subbands in low frequency
region and wide subbands in high frequency region. Also, its
frequency response resembles the mammalian cochlea [22]. By
employing this filter bank, we can attain faster convergence speed
than the uniform filter bank approach because it has more
whitened inputs in the low frequency subbands. It also gives
better separation performance because it trains adaptive para-
meters more exactly by using enough data in the high frequency
subbands. Although prewhitening of input signals may speed up
convergence as shown in [23], the approach was based on time-
averaged audio spectral characteristics. However, this could not
remove the detailed correlation which temporarily exists only at
an instance. Decimation of a filter bank is capable of removing
both the averaged and detailed correlations.

The remainder of the paper is organized as follows: Section 2
briefly reviews a filter bank approach to ICA for convolved
mixtures. In Section 3, our approach of utilizing nonuniform
filter banks is presented. This method is compared with the

corresponding uniform filter bank approach through several
experiments in Section 4. Finally, some concluding remarks are
presented in Section 5.

2. Review of a filter bank approach to ICA

Let us consider a set of unknown source signals, fsjðnÞ;

j¼ 1; . . . ;Ng, such that the signals are zero-mean and mutually
independent. If mixing involves convolution and time-delays,
an observation is

xiðnÞ ¼
XN

j ¼ 1

XLm�1

m ¼ 0

aijðmÞsjðn�mÞ; ð1Þ

where Lm and aijðmÞ denote a mixing filter length and a coefficient,
respectively [7].

To obtain the independent source signals from these observa-
tions, a filter bank approach can be considered as it shows better
separation performance than the frequency domain approach and
gives faster convergence with less computational complexity than
the time domain approach [12,13]. Among the filter bank
approaches, oversampled filter banks, where the decimation
factor is smaller than the number of analysis filters, accomplish
better performance than critically sampled filter banks. The
oversampled filter banks can have negligible aliasing when each
filter has a high stopband attenuation, so they make it possible to
perform adaptive filtering without requiring cross adaptive filters
between adjacent bands or distorting reconstructed signals
[17,24,25].

Since ICA is performed in the oversampled filter bank, adaptive
parameters in each subband can be adjusted without any
information from other subbands [12,13]. Thus, the filter bank
approach is appropriate for parallel processing. The inputs, which
are mixtures of unknown independent signals, are decomposed
into subband signals by analysis filters. Then, each subband signal
is downsampled by a decimation factor. Since the downsampled
signals are still convolved mixtures whose reverberation length
has decreased by the decimation factor, a typical ICA algorithm for
convolved mixtures can be used to obtain independent compo-
nents from the downsampled signals at each subband. Here, the
unmixing filter length is much shorter than that of the full-band
time domain approach. The outputs from the ICA network are
expanded, and the original independent signals can be recon-
structed from the subband outputs through synthesis filters after
fixing scaling and permutation.

As an ICA network in each subband, one may use a feedback
architecture [3,26] which is expressed as

uiðk;n
0Þ ¼

XLa

m0 ¼ 0

wiiðk;m
0Þxiðk;n

0 �m0Þ

þ
XN

j ¼ 1;ja i

XLa

m0 ¼ 1

wijðk;m
0Þujðk;n

0 �m0Þ; ð2Þ

where k and La denote subband index and adaptive filter length,
respectively. Usually, the length is shortened by a decimation
factor, comparing with that of the corresponding adaptive filters
in the full-band time domain approach. Here, adaptive filters
wijðk;m

0Þ force outputs uiðk;n
0Þ to reproduce the independent

subband signals. Among different algorithms to find out the
parameters, entropy maximization can provide a simple and
biologically plausible adaptive learning algorithm [8,13]:

wii newðk;0Þ

¼wii oldðk;0Þþmðk;n0Þ½1=w�ii oldðk;0Þ �jðuiðk;n
0ÞÞx�i ðk;n

0Þ�;
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Fig. 1. Time-averaged power spectral densities for three natural sounds in the

frequency domain.
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