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a b s t r a c t

In the paper, the problem of robust exponential stability analysis is investigated for stochastic Cohen–

Grossberg neural networks with both interval time-varying and distributed time-varying delays. By

employing an augmented Lyapunov–Krasovskii functional, together with the LMI approach and

definition on convex set, two delay-dependent conditions guaranteeing the robust exponential stability

(in the mean square sense) of addressed system are presented. Additionally, the activation functions are

of more general descriptions and the derivative of time-varying delay being less than 1 is released,

which generalize and further improve those earlier methods. Numerical examples are provided to

demonstrate the effectiveness of proposed stability conditions.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, there have been tremendous
developments on dynamics research of neural networks. Various
neural network models including cellular neural network, bidir-
ectional associative neural network and Cohen–Grossberg neural
network have been widely investigated and successfully applied
in many fields. Among the systems above, the Cohen–Grossberg
neural network [1] has especially gained particular research
attention since it is quite general to include several well-known
neural networks as its special cases and has promising application
potentials for tasks of classification, associative memory, parallel
computation and so on.

In many practical cases, time-delays are unavoidably encoun-
tered in the implementation of neural networks, and they may
induce the undesirable dynamic network behaviors such as
oscillation, instability or other poor performances. Time-delay
occurs due to the finite speeds of the switching and transmission
of signals in a network, which leads to delayed neural networks

that were firstly introduced in [2]. Since then, the dynamics of
delayed neural networks have been widely studied. In the recent
years, there has been an increasing research interest on the
stability analysis on delayed Cohen–Grossberg neural networks
and many results have been reported. Large numbers of conditions,
either delay-dependent or delay-independent, have been proposed
to guarantee the asymptotic and exponential stability for Cohen–
Grossberg neural networks with time-delays [3,4,8–13,23–27].

Although it has been realized that discrete time-delays can be
introduced into communication channels since they are ubiqui-
tous in both the neural processing and signal transmission, a
neural network usually has a special nature due to the presence
of an amount of parallel pathways with a variety of axon sizes
and lengths. Such an inherent nature can be suitably modeled by
distributed delays [5], because the signal propagation is distrib-
uted during a certain time period. As a matter of fact, a realistic
neural network should involve both discrete and distributed
delays [7]. Recently, the stability analysis problems of Cohen–
Grossberg neural networks with distributed delays have received
much attention [8,9]. It is worth noting that, most recently, the
asymptotic or exponential stability problems have been investi-
gated in [10–13] for the neural networks with both discrete and
distributed delays, in which LMI approach has been employed to
derive the stability criteria.

During the past years, there are the emergences of the dynamical
behaviors of stochastic neural networks as a new subject of research
topic. In real nervous systems, the synaptic transmission is a noisy
process brought on by random fluctuations from the release of
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neurotransmitters and other probabilistic causes, and it has been
realized that a neural network could be stabilized or destabilized by
certain stochastic inputs [17] which leads to the research on dynamics
of stochastic neural networks. Particularly, the stability of delayed
stochastic neural networks including the stochastic Cohen–Grossberg
ones has become an attractive research problem of prime significance
and many elegant methods have been proposed [17–27] by employing
various methods including the LMI technique. However, the stability
criteria in [23] are not presented in terms of LMIs, which makes them
checked inconveniently by resorting to Matlab LMI Toolbox. The
methods in [24–26] cannot be employed to tackle the stochastic
Cohen–Grossberg models with time-varying delays. In [27], the
stability criteria cannot tackle the case that derivative of delay
has an upper bound being greater than 1. Moreover, the derivative

of Rm

R 0
�Rm

R t
tþy f T ðxðsÞÞTf ðxðsÞÞds dy is estimated by R2
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R t
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t�Rm
f ðxðsÞÞ

ds�T T½
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t�Rm
f ðxðsÞÞds� is ignored in the present literature, which

may lead to some conservatism. On the other hand, the range of
variable delay considered in [23–27] is from 0 to an upper bound. In
practice, the range of delay may vary in a range for which the lower
bound is not restricted to be 0. In the case, the criteria in these works
are conservative because they do not take into account the
information of the lower bound of delay. To the best of authors’
knowledge, as for that restriction on derivative of delay less than 1 is
removed and stability criteria are presented in terms of LMIs, few
authors have investigated the robust exponential stability of
stochastic Cohen–Grossberg neural networks with both interval
time-varying and distributed delays yet, which remains important
and challenging.

Motivated by above discussions, the objective of this paper is to
study the exponential stability of uncertain stochastic Cohen–
Grossberg neural networks with mixed time-varying delays by
employing a novel Lyapunov–Krasovskii functional, in which the
variable delay belongs to an interval and the activation function is
varies in general, assuming neither differentiability nor strict
monotonicity. Through introducing some free-weighting matrices
and equivalent transformation of considered system, the delay-
dependent criteria are established in the forms of LMIs. Finally, the
effectiveness of the proposed stability criteria is illustrated with the
help of two numerical examples.

Notations. For the symmetric matrix X, X40 (respectively,
XZ0) means that X40 ðXZ0Þ is a positive-definite (respectively,
positive-semidefinite) matrix; AT ;A�T represent the transposes of
matrices A and A�1, respectively. For t40, Cð½�t;0�;Rn

Þ denotes
the family of continuous functions j from ½�t;0� to Rn with the
norm JjJ ¼ sup�tryr0 jjj. Let ðO;F; fFtgtZ0; PÞ be a complete
probability space with a filtration fFtgtZ0 satisfying the usual
conditions; Lp

F0
ð½�t;0�;Rn

Þ is the family of all F0-measurable
Cð½�t;0�;Rn

Þ-valued random variables x ¼ fxðyÞ : �tryr0g
such that sup�tryr0 EjxðyÞjpo1 where Ef�g stands for the
mathematical expectation operator with respect to the given
probability measure P; I denotes the identity matrix with an
appropriate dimension; the symmetric term in a symmetric
matrix is denoted by �.

2. Problem formulations

We consider uncertain stochastic Cohen–Grossberg neural
networks with mixed time-varying delays described by

dxðtÞ ¼ �aðxðtÞÞ bðxðtÞÞ � AðtÞf ðxðtÞÞ � BðtÞf ðxðt � tðtÞÞÞ
"

�DðtÞ

Z t

t�RðtÞ
f ðxðsÞÞds

#
dt þ sðt; xðtÞ; xðt � tðtÞÞÞdoðtÞ; ð1Þ

where xðtÞ ¼ ½x1ðtÞ; . . . ; xnðtÞ�
T 2 Rn is the neuron state vector;

aðxðtÞÞ ¼ diagfa1ðx1ðtÞÞ; . . . ;anðxnðtÞÞg represents the amplification
function and aiðxiðtÞÞði ¼ 1; . . . ;nÞ is assumed to be positive,
bounded and locally Lipschitz continuous and bðxðtÞÞ ¼ ½b1ðx1ðtÞÞ;

. . . ;bnðxnðtÞÞ�
T is the behaved function; f ð�Þ ¼ ½f1ð�Þ; . . . ; fnð�Þ�

T 2 Rn

stands for the neuron activation function; oðtÞ ¼ ½o1ðtÞ;

. . . ;omðtÞ�
T 2 Rm is an m-dimensional Brownian motion defined

on ðO;F; PÞ; and AðtÞ ¼ AþDAðtÞ; BðtÞ ¼ Bþ DBðtÞ; DðtÞ ¼

Dþ DDðtÞ are the uncertain matrices of appropriate dimensions.
Here, tðtÞ;RðtÞ denote the interval time-varying delay and
distributed one satisfying

0rt0rtðtÞrtm; _tðtÞrm; 0rRðtÞrRm; ð2Þ

in which tm, t0, m, Rm are constants.

Remark 1. The hypothesis on derivative of variable delay being
less than 1 is imposed on the stability criteria proposed in [10,27].
However, in the paper, the restriction of delay’s derivative being
less than 1 is removed, which is more meaningful than the ones in
[10,27].

The following assumptions are made throughout this paper.

Assumption 1. DAðtÞ;DBðtÞ;DDðtÞ are unknown matrices repre-
senting time-varying parametric uncertainties, and are of linear
fractional forms

½DAðtÞ DBðtÞ DDðtÞ� ¼ FDðtÞ½E1 E2 E3�; ð3Þ

DðtÞ ¼ LðtÞðI � JLðtÞÞ�1; I � JT J40;

in which F; J; Ei ði ¼ 1;2;3Þ are known constant matrices of
appropriate dimensions and LðtÞ is an unknown time-varying
matrix function satisfying the following condition:

LT
ðtÞLðtÞrI: ð4Þ

Assumption 2. Each aið�Þ is a continuous function and satisfies
0oairaið�Þrai for all i ¼ 1; . . . ;n. And each function bið�Þ : R-R is
locally Lipschitz and there exist pi; gi such that piZ

_b ið�ÞZgi40 for
all i ¼ 1; . . . ;n. Here, we denote L ¼ diagfa1; . . . ; ang, C ¼
diagfa1; . . . ; ang, P ¼ diagfp1; . . . ;png, and G ¼ diagfg1; . . . ; gng.

Assumption 3. Each activation function fið�Þ in (1) is bounded and
satisfies

s�i r
fiðxÞ � fiðyÞ

x� y
rsþi ; 8x; y 2 R; xay; i ¼ 1;2; . . . ;n; ð5Þ

and fið0Þ ¼ 0, where sþi ;s
�
i are constants. We denote

~S ¼ diagfsþ1 ; . . . ;s
þ
n g, S ¼ diagfs�1 ; . . . ;s�n g, and

S1 ¼ diagfsþ1 s
�
1 ; . . . ;s

þ
n s
�
n g; S2 ¼ diag

sþ1 þ s
�
1

2
; . . . ;

sþn þ s�n
2

� �
:

ð6Þ

Assumption 4. sðt; �; �Þ : Rþ � Rn
� Rn-Rn�m

ðsðt;0;0Þ ¼ 0Þ is
locally Lipschitz continuous and satisfies the linear growth
condition as well. Moreover, sðt; �; �Þ satisfies the following
condition:

trace½sT ðt; x; yÞsðt; x; yÞ�rxTPT
1P1xþ yTPT

2P2yþ f T ðxÞXT
1X1f ðxÞ

þf T ðyÞXT
2X2f ðyÞ; ð7Þ
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