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a b s t r a c t

We propose a novel “low-rank þ dual” model for the matrix decomposition problems. Based on the
unitarily invariant property of the Schatten p-norm, we prove that the solution of the proposed model
can be obtained by an “l1þ l1” minimization problem, thus a simple and fast algorithm can be provided
to solve our new model. Furthermore, we find that applying “l1þ l1” to any vector can achieve a shifty
threshold on the values. Experiments on the simulation data, the real surveillance video database and the
Yale B database prove the proposed method to outperform the state-of-the-art techniques.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction is an extraordinary important tool for
processing the high-dimensional data, such as video, image, audio
and bio-medical signals. A well-known technique for dimension
reduction is the low-rank approximation method, which is actu-
ally solving the rank minimization problems (RMP) [1–4]. And
recently, RMP attract more and more attentions in many fields of
science and engineering, such as computer vision [5–10], machine
learning [7,8,11–13], and signal and image processing [2,5,8,9,14].
Due to the effectiveness of the rank minimization, many
researchers have proposed various algorithms to solve the pro-
blem. An important classical model is reduced-rank regression,
which limits the coefficient matrix to be low-rank [15–17]. A
nuclear norm penalized least squares estimator has been proposed
by Yuan et al. [18], and the estimator encourages the singular
values sparsity and the simultaneous rank reduction [19,20].
Rohde and Tsybakov investigate the Schatten-q quasi-norm pen-
alty and non-asymptotic bounds of prediction risk [21].

Reduced-rank is a very effective dimension reduction
assumption, which connections with many popular tools including
principal component analysis (PCA) and canonical correlation
analysis (CCA), and it is extensively studied in matrix completion
problems [5,17,22–24]. Actually, the rank function and nuclear
norm penalized methods in robust PCA (RPCA) problems can be
respectively viewed as l0 and l1 penalized methods in the singular

value decomposition (SVD) domain respectively. Therefore, the
general strategy is to solve the nuclear norm minimization pro-
blem (NNMP) instead of the RMP, but the solution to NNMP suffers
from the high computation cost of multiple SVDs.

In this paper, a “low-rank þ dual” model is formalized from the
viewpoint of dimension complexity reduction, and an efficient
iterative update algorithm is designed to solve the model. It is
necessary to particularly mention that “dual” here refers to the
duality between the norms in functional analysis [25], rather than
the typical concept of dual problem in computational science. Dual
norms to be used as regular items was originally proposed by
Meyer in image decomposition problem [26]. A model with total
variation (TV) norm and G-norm (the dual of the TV-norm) was
introduced by Meyer, which can better capture the cartoon and
texture part in the decomposition of image. Thus, we try to apply
dual norms to the regularization terms in the background and
foreground modeling problems. The novel model can limit the
correlation between the components, and the unitarily invariant
property of the Schatten p-norm ensures that the model can be
replaced by a simplified “l1þ l1” minimization problem.

In order to test the efficiency and effectiveness of the proposed
model, we apply our method both in the simulation data and real
database experiments. In the first simulation experiment, ran-
domly generated square matrix, which is actually the sum of the
low-rank component and the error interference component, will
be used as the test data. We apply our proposed method and other
five state-of-the-art methods on the simulation test data to
recover the low-rank and the interference component. In the
second simulation experiment, we test the performances of IALM,
GoDec and our method in matrix completion tasks. We discard a
few entries from a randomly generated low-rank matrix, and
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recover the whole matrix through three different methods. Back-
ground modeling and specularity removing are two challenging
task for computer vision applications, which are the fundamental
of the follow-up work, such as motion tracking [27] and feature
extraction [28]. Therefore, in the real database experiments, we
apply our model to the background–foreground modeling and
specularity removing problems, and compare the performance of
the proposed method with two existing widely used methods.
Experimental results demonstrate that the proposed algorithm is
superior to other algorithms in most cases.

The rest of the paper is organized as follows. First, we briefly
review the “low-rank þ sparse” model and present our new “low-
rank þ dual” model in the next section. In Section 3, we simplify
the problem into the vector level and propose the relevant algo-
rithm in detail. Next in Section 4, we discuss the thresholding
essence of our method, and compare the numerical results with
other existing methods on some practical experiments. Finally, we
give some concluding remarks in Section 5.

2. Related works

2.1. “Low-rank þ sparse” model

Suppose YARm�n is a large matrix whose columns are arranged
by the data set of the observational images, the size of each image
is m1 � n1 ¼m and the number of images is n. Then the low-rank
matrix approximation problem is to efficiently and accurately
obtain the low-rank matrix X from the measurement Y which has
been corrupted by the errors E, X; EARm�n. The common “low-
rank þ sparse” model formulates as follows:

minX;E λ RankðXÞþ JEJ0
s:t: Y ¼ XþE;

(
ð1Þ

where Rankð�Þ represents the rank function of the desired matrix;
J � J0 is the regularization term for promoting sparsity; and λ is a
positive weighting parameter providing a trade-off between the
sparse and low-rank components. Model (1) suggests to seek the
lowest-rank matrix X subject to the sparse constraint E, we hope to
exactly obtain the pair (X,E) that could have generated the data
matrix Y. Nevertheless, due to the discrete of the rank function and
the highly non-convex of the l0-norm, (1) is NP-hard and no effi-
cient solution is known to its sub-problems.

A tractable approach for solving (1) is to relax the model into
the following convex optimization problem:

minX;E λJX Jnþ JEJ1
s:t: Y ¼ XþE;

(
ð2Þ

where J � Jn is the nuclear norm defined by the sum of all singular
values, which is the convex hull of the matrix rank; and J � J1 is the
l1-norm defined by the component-wise sum of absolute values of
all entries, which is the relaxation of the l0-norm. Moreover, recent
advances have proposed a variety of different methods to solve (2):
the iterative thresholding approach [14], the accelerated proximal
gradient approach [29], the exact and inexact augmented Lagrange
multiplier approaches [3], etc. However, almost all the available
algorithms of the “low-rank þ sparse” model are plagued by the
complex calculation accompanied with SVD.

2.2. “Low-rank þ dual” model

In this paper, we propose a novel “low-rank þ dual” model:

minX;E λJX Jσ;1þ JEJσ;1
s:t: Y ¼ XþE:

(
ð3Þ

Here J � Jσ;p is the Schatten p-norm, which is actually defined as the
lp-norm of the singular value vector.1 To illustrate the advantages of
our model, we need to recall the definition of Schatten p-norm first.

Definition 1. If σi denote the singular values of the matrix
AARm�n ðmZnÞ, then the Schatten p-norm can be defined as
JAJσ;p ¼ ðPn

i ¼ 1 σ
p
i Þ1=p. All Schatten norms are sub-multiplicative

and unitarily invariant, which means that JAJ ¼ JUAVT J holds for
any matrix A and unitary matrices U, V.

From the definition, we can know that the most familiar case
p¼1 of the Schatten norm is the sum of all singular values, which
yields the nuclear norm and associates with low-rank. Moreover,
J � Jσ;1 and J � Jσ;1 in (3) are dual to each other, then due to the
property of dual norms, we should have X; Eh ij jr JX Jσ;1 JEJσ;1
holds for the matrix X and E. Thus, minimizing the sum of JX Jσ;1
and JEJσ;1 should achieve a smaller inner product X; Eh ij j, which
leads to the less correlated decomposition X, E of the data Y.

The varichange of the regularization term is inspired by duality
theory applied to the image decomposition problems [26,30]. Through
such improvement, it has no longer need to limit the non-low-rank
part of the matrix to be “sparse”, dual regularization terms in the
model can directly lead to the decomposition of the data matrix with
two less correlated components. More importantly, the particular
norm constraint enables the novel “low-rank þ dual” model to be
solved in the vector field. A simple and fast algorithm of this model
will be demonstrated both in the theoretical and experimental fields.
Numerical experiment results show that our “low-rank þ dual”model
performs well in the matrix decomposition problems, and the time
consumption of the corresponding algorithm is much less than other
“low-rank þ sparse” methods. The theoretical basis and the relevant
algorithm will be provided in the following section.

3. Problem simplification and theoretical derivation

Our approach minimizes the model (3) as follows, we sub-
stitute the equation constrain into the minimization function to
get the following form:

min
X

JY�X Jσ;1þλJX Jσ;1; ð4Þ

YARm�n;mZn. We confirm (4) as our original problem in this
paper, and all the matrices involved in the minimization problem
now are not square matrix. In the following sections, we will show
the simplification of the original problem in details.

3.1. Simplified to vector level

Let Y ¼ LΣRT be the singular value decomposition of the data
matrix Y, where L;R are unitary matrix of size m�m, n� n and
satisfy LTL¼ LLT ¼ I;RTR¼ RRT ¼ I. Then

Y�Xk kσ;1þλ Xk kσ;1 ¼ LðΣ�LTXRÞRT
��� ���

σ;1
þλ LLTXRRT
��� ���

σ;1
: ð5Þ

Due to the unitarily invariant of the Schatten norms, we have

LðΣ�LTXRÞRT
��� ���

σ;1
þλ LLTXRRT
��� ���

σ;1
¼ Σ�LTXR
��� ���

σ;1
þλ LTXR
��� ���

σ;1
:

ð6Þ

1 Notice that this is not an equivalence conception for the singular value vector
and the singular vectors – the former, a unique vector, means the vector be com-
posed of the elements of the matrix singular values, while the latter refers to the
columns of the unitary matrices in the singular value decomposition.
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