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a b s t r a c t

Multi-view stereo (MVS) plays a critical role in many practically important vision applications. Among
the existing MVS methods, one typical approach is to fuse the depth maps from different views via
minimization of the energy functional. However, these methods usually have expensive computational
cost and are inflexible for extending to large neighborhood, leading to long run time and reconstruction
artifacts. In this work, we propose a simple, efficient and flexible depth-map-fusion-based MVS recon-
struction method: CoD-Fusion. The core idea of the method is to minimize the anisotropic or isotropic
TVþL1 energy functional using the coordinate decent (CoD) algorithm. CoD performs TVþL1 mini-
mization via solving a serial of voxel-wise L1 minimization sub-problems which can be efficiently solved
using fast weighted median filtering (WMF). We then extend WMF to larger neighborhood to suppress
reconstruction artifacts. The results of quantitative and qualitative evaluation validate the flexibility and
efficiency of CoD-Fusion as a promising method for large scale MVS reconstruction.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-view stereo (MVS) is a classic while challenging topic in
computer vision [1–6], and plays a critical role in many practically
important vision applications, e.g., augmented reality [63], urban
reconstruction [7], and object detection, tracking and recognition
[64–66]. The main task of MVS is to reconstruct a 3D scene surface
from multiple calibrated 2D images. Based on the cues adopted in
MVS, the existing approaches can be classified into four categories:
reprojection error-based [7–12], photo-consistency-based [13–20],
depth-map-based [21–33], and feature-based methods [34–36].
Among them, depth-map-based methods can be conveniently
integrated with the existing stereo matching methods, and thus
are more scalable and efficient. When accurate stereo correspon-
dence is obtained, the reconstruction will be perfect. However, due
to the occlusion, inaccurate camera calibration and lack of texture,
false correspondence usually is inevitable, leading to incomplete
and inaccurate reconstruction. For better reconstruction, regular-
ization terms usually should be included to represent the prior of
the scene surfaces.

A number of volumetric-based methods have been proposed
for depth map fusion by integrating stereo image cues with

regularization term [21,24,29,30,32,33], which share several diffi-
culties. First, the computational cost is high for reconstructing
scene with deep concave regions. Although coarse-to-fine scheme
can be used for acceleration, the protrusion of surface removed in
the low-resolution optimization is hard to be recovered in high-
resolution. Second, although large neighborhood carries more
context information for suppressing noise and artifacts, most
existing methods are not scalable in taking large neighborhood in
optimization.

In this paper, we propose a fast and flexible depth-map-fusion-
based MVS method, i.e., CoD-Fusion. Compared with existing
volumetric-based depth map fusion methods, CoD-Fusion is more
computationally efficient, and can be extended from small 6-
neighborhood in classic anisotropic TV to a larger neighborhood
(e.g., 26 or 124) for better denoising and removal of irrelevant
background regions. The major contributions of the proposed
method are two folds:

� The coordinate decent (CoD) method [62] is used to decompose
the anisotropic TVþL1 energy functional1 into a serial of L1
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1 In many literatures on variational methods for MVS [8–10,12,29,30,32],
“energy functional” have been used. The meaning of “functional” indicates that the
input variable of the function is also a function.
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minimization sub-problems for each voxel. Fast weighted med-
ian filtering can then be used to solve these sub-problems.

� An approximation for isotropic 3D TV is given and analyzed,
which allows us to employ CoD-Fusion for isotropic TVþL1
minimization.

Multiple public datasets and self-captured datasets are used to
evaluate the effectiveness of the proposed method. In the Mid-
dlebury MVS benchmark, compared with all published methods,
the proposed method achieves the tied for the first and tied for the
third on the dino ring and temple ring datasets in terms of com-
pleteness, respectively.

The rest of the paper is organized as follows: the related work
is discussed in Section 2, the proposed CoD-Fusion method is
presented in Section 3, including the energy functional and opti-
mization algorithm. Experimental results are analyzed in Section 4
and concluding remarks are provided in Section 5.

2. Related work

In volumetric-based depth map fusion, various methods have
been developed to minimize the energy functional, such as Graph
cut [37] and continuous convex optimization [38]. Both of these
two kinds of methods are able to reach the global minimum of the
energy functional. However, graph cut based methods are difficult
in parallel computation and may introduce significant metrication
errors due to discretization [39]. Comparably, the continuous
convex optimization methods are more promising on these issues.

Zach et al. [29] proposed a truncated-signed-distance-field
(TSDF)-based fusion method. They transfer the depth maps to a
set of TSDFs and then use an isotropic total variation (TV)þL1
energy functional to integrate them. The optimization of isotropic
TVþL1 can be implemented by alternatively solving two sub-
problems: a Rudin–Osher–Fatemi (ROF) sub-problem and a point-
wise scalar sub-problem. The ROF sub-problem is solved using
Chambolle projection method [40] and the scalar sub-problem is
solved using soft-thresholding. Gottfried et al. [30] extended [29]
for more efficient GPU implementation, where improved primal-
dual method [41] was adopted for the ROF sub-problem and a
generalized soft-thresholding [42] was employed for the scalar
sub-problem. To avoid the over-smoothing behavior caused by
isotropic TV, Schroers et al. [32] adopted anisotropic smoothing to
better control the smoothness with respect to local structures.
Although much of improvement has been made, these continuous
methods still have expensive computational cost and are inflexible
for extending to large neighborhood, leading to long run time and
reconstruction artifacts.

3. Methods

The pipeline of the proposed CoD-Fusion method is summar-
ized in Fig. 1. Given input images with corresponding camera
parameters, the adjacent image pairs are stereo-rectified and the
stereo matching algorithm is performed to generate depth maps.
Then, all the depth maps frommultiple image views are integrated
on the volume to compute the truncated signed distance function
(TSDF). Finally, the TVþL1 energy functional is solved using CoD.

3.1. Estimation of depth maps via stereo matching

Given input images together with cameras parameters
(intrinsic parameters and camera poses), depth maps can be
inferred by searching the correspondence between image pairs.
For MVS, the observed images are usually captured by a movable
camera with arbitrary camera poses. To accurately and efficiently
estimate the depth, stereo rectification is essential which usually
involves two steps: (i) select suitable neighboring images for each
reference image to build stereo pairs; (ii) perform stereo rectifi-
cation to simplify the correspondence search.

After stereo rectification, stereo matching is then utilized to
infer depth information for each stereo pair. Therefore we can
employ the well-studied stereo matching methods in binocular
stereo vision [43–47] to improve the 3D reconstruction perfor-
mance. For a rectified stereo pair, the pixels in the left image
(reference image) are matched in the right images with some
criteria. Under the assumption of Lambertian reflection model, the
correspondence of pixels between left and right images should
have maximum photo-consistency, and a prior is usually included
to enforce the local smoothness. The result of correspondence
search assigns a disparity for each pixel of reference image. To
remove the occlusion part, a left-right check is performed to filter
the inconsistent pixels. The result disparity maps are then mapped
to real depth metrics according to camera intrinsic parameters. In
the paper, we generate depth maps using an existed stereo
matching algorithm, libelas [59]. For libelas, the correspondence is
constructed based on the features after Sobel operation in a small
window for each pixel. For pixel correspondence, the L1 distance
between two features is used as the measure criteria. The libelas
constructs a generative model based on a set of robust seed points
on high-textured regions, and uses the Delaunay triangulation to
constrain the search range of correspondences for each pixel in an
admissible range. As a result, the running time of libelas is irre-
levant to the disparity range, making it more suitable to large-
scale scenes.

The depth map from a reference image records incomplete
depth information of the scene and may include noise. To integrate
these noisy depths from each reference image view and build a

Fig. 1. Overview of the proposed CoD-Fusion framework.
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