Neurocomputing 72 (2008) 3-14

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Improving radial basis function kernel classification through incremental
learning and automatic parameter selection

Carlos Renjifo *, David Barsic, Craig Carmen, Kevin Norman, G. Scott Peacock

The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA

ARTICLE INFO ABSTRACT

Available online 25 September 2008

Keywords:

Support vector machine

Run-time complexity

Parameter estimation

Simultaneous perturbation stochastic
approximation

Greedy search

Training algorithms for radial basis function kernel classifiers (RBFKCs), such as the support vector
machine (SVM), often produce computationally burdensome classifiers when large training sets are
used. Furthermore, the developer cannot directly control this complexity. The proposed incremental
asymmetric proximal support vector machine (IAPSVM) employs a greedy search across the training
data to select the basis vectors of the classifier, and tunes parameters automatically using the
simultaneous perturbation stochastic approximation (SPSA) after incremental additions are made. The
resulting classifier accuracy, using an a priori chosen run-time complexity, compares favorably to SVMs
of similar complexity whose parameters have been tuned manually.

© 2008 Elsevier B.V. All rights reserved.

1. Background
1.1. Notation

In this paper, scalars will be denoted by lowercase italic letters,
vectors by lowercase bold letters, and matrices by uppercase bold
letters. Functions are defined with italicized letters followed by a
list of parameters in parentheses. A vector of ones of arbitrary
length is denoted e. The training data are represented by an m x n
matrix, where m is the number of training samples and n is the
number of features. A; denotes the ith row (sample) in A. This
notation differs from the standard convention, where vectors are
defined as columns, but was chosen to preserve notational
consistency with the papers that form the foundation of this
work, namely [9,10]. A denotes a selected subset of rows from A.
Vertical concatenation of two matrices Ae®i™*" and Be P> " is
expressed as [A; B]e®(™P <" Horizontal concatenation of two
matrices with AeR™*" and Be®™*P is expressed as [A,
B]eoi™*(™P) A quantity with a superscript in parentheses, such
as X® for a matrix, X for a vector, or ¥ for a scalar, is the ith
instance of some repeated process. Variables with carets, such as
Y for a matrix, ¥ for a vector, or for a scalar, represent estimates
of some quantity. The training data in A have associated class
labels {—1, 1} along the main diagonal of the m x m matrix D. The
radial basis function (RBF) kernel matrix with tunable width
parameter y for any two matrices AeR™*" and BeR?*" is

* Corresponding author. Tel.: +1443 778 4527.
E-mail addresses: Carlos.Renjifo@jhuapl.edu (C. Renjifo),
David.Barsic@jhuapl.edu (D. Barsic), Craig.Carmen@jhuapl.edu (C. Carmen),
Kevin.Norman@jhuapl.edu (K. Norman), Scott.Peacock@jhuapl.edu (G.S. Peacock).

0925-2312/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2008.04.053

denoted by the matrix Ke®™ P, where the ith row (i=1,...,m)
and jth column (j = 1, ...,p) of K are defined as follows:

K = K(A;, B)) = exp(—7||A; — Bjl|) (1)

1.2. Problem overview

This paper focuses on building radial basis function kernel
classifiers (RBFKCs) under constraints commonly encountered in
real-world situations. These classification scenarios often contain
data sets with large numbers of training points (>10* samples)
and high feature dimensionality (10'-10> features).

In a resource-constrained scenario, training may be done “off
line” with any preferred method (i.e., there are no appreciable
constraints placed on time or memory), but the resulting classifier
must be capable of being implemented into a system with limited
computational, power, and/or memory resources. Current meth-
ods focus on improving classifier accuracy or reducing training
time or memory usage, but they do not consider the run-time
implications. When the classifier is used in systems such as
embedded devices or autonomous distributed sensors, the run-
time efficiency of the classifier becomes a key constraint on model
selection. The methods proposed in this paper focus on this aspect
of the problem.

1.3. RBF kernel-based classification

The support vector machine (SVM) [31] is one of the most
popular and robust nonparametric classification algorithms in
current literature. Its method of “maximizing the margin” or
“Large-Margin Classification” has shown excellent performance

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.04.053
mailto:Carlos.Renjifo@jhuapl.edu
mailto:David.Barsic@jhuapl.edu
mailto:Craig.Carmen@jhuapl.edu
mailto:Kevin.Norman@jhuapl.edu
mailto:Scott.Peacock@jhuapl.edu

4 C. Renjifo et al. / Neurocomputing 72 (2008) 3-14

on a variety of classification problems. The canonical SVM
algorithm is a linear classifier; nonlinear classification is achieved
via a kernel transform satisfying Mercer’s conditions, such as the
RBF kernel defined in Eq. (1). Other kernels that satisfy Mercer’s
conditions include the polynomial kernel and the hyperbolic
tangent kernel. Burges provides an excellent tutorial on these
concepts in [5].

Many variants based on the original SVM have been proposed.
A least-squares concept is developed for both the least-squares
support vector machine (LS-SVM) [25] and the proximal support
vector machine (PSVM) [10]. Similar to the SVM, LS-SVM and
PSVM are linear classifiers that use kernel transforms to permit
nonlinear classification. For all of these related methods, classi-
fication of unknown patterns is achieved via the following:

f(x) = sign(K(x, A)W + b) (2)

where Ae %P *" is a subset of p rows of A, and we %P and b are the
weight and bias terms computed by the respective algorithms.
In this paper, any classifier that can be evaluated using Eq. (2),
with K defined by Eq. (1), is called a RBFKC.

In the SVM, the rows of A are the support vectors, which are
defined as points that either lie on the canonical hyperplanes or
are incorrectly classified. The physical meaning of the “support
vectors” is not consistent between the SVM and the least-squares
SVM methods. Therefore, the more general term “kernel center” is
used to denote any point about which the RBF kernel transform
must be evaluated to classify an unknown data sample. Running
the classifier on a new data point requires calling the kernel
function once for each kernel center. Thus, the run-time
computation of Eq. (2) is directly proportional to the number of
kernel centers contained in A.

1.4. Limitations of the standard SVM

Theoretically, Steinwart demonstrated that a linear relation-
ship exists between the expected number of kernel centers in a
trained classifier and the size of the training set for a RBFKC. In
particular, as the size of the training set approaches infinity, the
fraction of training data points used as kernel centers approaches
twice the Bayesian misclassification rate for the L1-SVM, the
noise probability for the L2-SVM, and 1 for the LS-SVM [24].
A consequence of this discovery is that SVMs using RBF kernel
transforms trained with large data sets typically yield classifiers
with large numbers of kernel centers.

A further limitation of the SVM is that the number of kernel
transforms that needs to be computed at run time to classify
unknown data cannot be specified during the training stage.
Although it is possible via trial and error to reduce/increase the
size of the training set to produce a classifier with a desired
number of kernel centers, such an approach is tedious, imprecise,
and likely to yield suboptimal results.

The preceding limitations render the standard SVM impractical
for use in resource- or power-constrained systems, where upper
bounds in computational complexity often exist, except in the
unlikely event that linear classification yields acceptable perfor-
mance or the available training data are very limited.

1.5. Survey of SVM modifications to reduce run-time complexity

Various modifications to the SVM have been proposed to
reduce run-time complexity. Such methods often attempt to
remove unnecessary members of the training data set. Tsang et al.
[29] built the core vector machine (CVM) using a “core vector set”
found by solving a minimum enclosing ball (MEB) problem.
Editing techniques were employed by Bakir et al. in [1]. Zhan and

Shen [33] used adaptive techniques that penalize extreme
outliers. Others have developed incremental approaches for
increasing SVM efficiency, such as Keerthi et al. [12] and Bordes
et al. [4]. Fung and Mangasarian [9] built an incremental version
of the PSVM to allow an existing linear classifier to be modified to
reflect the solution using the original training data with points
added or removed—their approach is quite different from the
approach to be presented here.

Osuna and Girosi [17] proposed a two-stage algorithm
involving the solution of the original SVM problem followed by
a support vector machine regression (SVMR). Although their
method provides controllable sparseness, it has been shown to be
effective only in highly separable, low-dimensional classification
environments. Furthermore, it is limited to small training sets
(< 10,000 points) due to memory limitations.

Finally, the relevance vector machine (RVM) of Tipping [27]
is a RBFKC that achieves substantial efficiency. However, even
with recent improvements to the training time and sparseness
of the final solution [28], the algorithm still requires a substan-
tially higher training time (on the order of m>, where m is the
number of training points) than competing SVM techniques,
making it impractical for use with Ilarge training sets
(10,000-100,000 points). Additionally, the RVM does not contain
explicit controls to pre-specify the final complexity of the
classifier solution.

Various least-squares algorithms have been developed that use
a two-norm rather than one-norm objective function. These SVM
variants lead to efficient, analytic solutions, but lack sparseness.
Without sparseness, the trained classifiers are slow at run time.
Suykens et al. [26] attempted to improve the sparseness by prun-
ing training data points corresponding to small (in magnitude)
weights. Alternatively, Lee and Mangasarian [15] applied reduced
kernel techniques in their PSVM algorithm. Although the method
used all data points as constraints, it employed only a small subset
of points as kernel centers.

1.6. Publication overview

The remainder of this publication focuses on the proposed
incremental asymmetric proximal support vector machine
(IAPSVM) algorithm. Beginning with a discussion of the least-
squares adaptations to the SVM, Section 2 describes the formula-
tion of the IAPSVM method. In Section 3, the problem of
parameter estimation is discussed, and a parameter-tuning
scheme based on Spall’'s simultaneous perturbation stochastic
approximation (SPSA) algorithm [21] is introduced to eliminate
manual tuning. Finally, Section 4 compares the performance of
the IAPSVM algorithm with several SVM formulations on two
benchmark data sets: the UCI Forest Covertype data set [3] and
the MNIST handwritten digit data set [14].

2. Methods to build efficient RBF kernel classifiers
2.1. Overview of the proximal SVM adaptation

The canonical linear SVM is the solution to the quadratic
programming problem given as
. 1
T T
min ve't + -w'w
(W,b,g)emmt1+m E’ 2

s.t. D(Aw — eb)>e—§
£=0 (3)

Three significant changes are made to convert the SVM in Eq. (3)
to a PSVM. First, the two-norm of the margin & error replaces the

Download English Version:

https://daneshyari.com/en/article/408864

Download Persian Version:

https://daneshyari.com/article/408864

Daneshyari.com

https://daneshyari.com/en/article/408864
https://daneshyari.com/article/408864
https://daneshyari.com

