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a b s t r a c t

The minimum average correlation energy (MACE) filter is a well known correlation filter for object

recognition. Recently, a nonlinear extension to the MACE filter using the correntropy function in

feature space has been introduced. Correntropy is a positive definite function that generalizes the

concept of correlation by utilizing higher order moment information of signal structure. Since the

MACE is a spatial matched filter for an image class, the correntropy MACE (CMACE) can potentially

improve its performance. Both the MACE and CMACE are basically memory-based algorithms and due to

the high dimensionality of the image data, the computational cost of the CMACE filter is one of the

critical issues in practical applications. We propose to use a dimensionality reduction method based on

random projections (RP), which has emerged as a powerful method for dimensionality reduction in

machine learning. We apply the CMACE filter with random projection (CMACE-RP) to face recognition

and show that it indeed outperforms the traditional linear MACE in both generalization and rejection

abilities with small degradation in performance, but great savings in storage and computational

complexity.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Correlation filters have been applied successfully to target
detection and recognition problems such as automatic target
recognition (ATR) [41] and face recognition [34,44,43]. The
advantages of the correlation filter approach are simplicity and
rotation and shift invariance properties [42]. Object recognition is
performed by cross-correlating an input image with a synthesized
template (filter) and the correlation output is searched for the
peak, which is used to determine whether the object of interest is
present or not. It is well known that matched filters are the
optimal linear filters for signal detection under linear channel and
white noise conditions [37]. For image detection, matched spatial
filters (MSF) are optimal in the sense that they provide the
maximum output signal to noise ratio (SNR) for the detection of a
known image in the presence of white noise, under the reasonable
assumption of Gaussian statistics [39]. However, the performance
of the MSF is very sensitive to even small changes in the reference
image and the MSF cannot be used for multiclass pattern
recognition since the MSF is only optimum for a single image.

Therefore distortion invariant composite filters have been pro-
posed in various papers [41].

The most well known of such composite correlation filters are
the synthetic discriminant function (SDF) [20] and its variations.
In the conventional SDF approach, the filter is matched to a
composite image that is a linear combination of the training
image vectors such that the cross correlation output at the origin
has the same value with all training images. The hope is that this
composite image will correlate equally well not only with the
training images but also with other distorted versions of that
training images, even with test images in the same class. The
shortcomings of the conventional SDF are that the SDF does not
consider any input noise and it has a poor rejecting ability for out-
of-class (false) images since it controls only a single point in the
output correlation plane. The minimum variance SDF (MVSDF)
filter has been proposed in [40] to take into consideration additive
input noise. The MVSDF minimizes the output variance due to
zero-mean input noise while satisfying the same linear con-
straints as the SDF. One of the major difficulties in MVSDF is that
we often do not know the noise covariance exactly. Another
correlation filter that is widely used is the minimum average
correlation energy (MACE) filter [29]. The MACE minimizes the
average correlation energy of the output over the training images
to produce a sharp correlation peak subject to the same linear
constraints as the MVSDF and SDF filters. In practice, the MACE
filter performs better than the MVSDF with respect to rejecting
out-of-class input images. The MACE filter, however, has been
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shown to have poor generalization properties, that is, images in
the recognition class but not in the training exemplar set are not
recognized well. Therefore, the optimal trade-off filters have been
proposed by [32] to combine the properties of various SDFs. Most
of these are linear correlation filters. A nonlinear extension to the
MACE filter using information theoretic learning (ITL) criterion
has also been proposed in [13].

Recently, kernel-based learning algorithms have been heavily
researched due to the fact that linear algorithms can be easily
extended to nonlinear versions by the kernel method [35]. The
kernel matched spatial filter (KMSF) has been proposed for
hyperspectral target detection in [26] and the kernel SDF has
been proposed for face recognition [23]. More recently, a new
generalized correlation function, called correntropy has been
introduced by our group [33]. Correntropy is a positive definite
function, which measures a nonlinear similarity between random
variables (or stochastic processes) and it involves high-order
statistics of input signals, therefore it could be a promising
candidate for machine learning and signal processing. Correntropy
defines a new reproducing kernel Hilbert space (VRKHS)1 of the
same dimension as the input, which simplifies the formulation of
analytic solutions in the VRKHS. Applications to the matched filter
[30], chaotic time series prediction [31], face recognition [24] and
synthetic aperture radar (SAR) automatic target recognition
[21,22] have been presented in the literature. In [24,22] we
exploit the linear structure of the VRKHS to formulate the MACE
filter with similar equations as in the input space, which we called
the correntropy MACE (CMACE). However, due to the nonlinear
relation between the input space and this feature space, the
CMACE corresponds to a nonlinear filter in the input space and
has been shown to possess better generalization and rejecting
performance than the conventional MACE.

Both the conventional MACE and the CMACE are memory-
based algorithms, therefore, in practice, the drawback of this class
of algorithms is both the storage requirements and the high
computational demand. The output of the CMACE filter is
obtained by computing the product of two matrices defined by
the image size and the number of training images, and each
elements of the matrix requires Oðd2

Þ computations, where
d is the number of image pixels. This quickly becomes too
complex in practical settings even for relatively small images.
The fast CMACE filter using the fast Gauss transform (FGT) has
been proposed in [21] to increase the computational speed
of the CMACE filter, but the storage is still high. When the
number of training images is N, the total computation complexity
of one test output of the CMACE is Oðd2NðN þ 1ÞÞ and this can be
reduced to OðpcdNðN þ 1ÞÞ, where p is the order of the Hermite
approximation and c is the number of clusters utilized in the FGT
(p; c5d).

In this paper we use a dimensionality reduction pre-processor
based on random projections (RP) to decrease the storage and
meet more readily available computational resources. RP has
emerged as a powerful method for dimensionality reduction in
machine learning and image compression [14,5], outperforming
principal component analysis (PCA) in many applications. A
theoretical underpinning to compressive sampling is currently
being explored [10].

The organization of this paper is as follows. In Section 2, the
MACE filter is reviewed briefly. In Section 3, we review also the
CMACE filter based on correntropy and present the dimensionality
reduction method with RP in Section 4. In Section 5, we present
simulation results for face recognition and Section 6 summarizes
and points out some further research.

2. MACE filter

In this section, we summarize the MACE filer formulation in [29].
We consider a two-dimensional ith image as a d� 1 column vector
xi, where d is the number of pixel. This one-dimensional discrete
sequence can be obtained by lexicographically reordering the
image. The conventional MACE filter is formulated in frequency
domain. The discrete Fourier transform (DFT) of the sequence xi is
denoted by Xi and we define the training image data matrix X as

X ¼ ½X1;X2; . . . ;XN�, (1)

where the size of X is d� N and N is the number of training data.
Let the vector h be the filter in space domain and its Fourier
transform vector be H. We are interested in the correlation of the
input image and the filter. The correlation of the ith image
sequence xiðnÞ with filter sequence hðnÞ can be written as

giðnÞ ¼ xiðnÞ � hðnÞ. (2)

By Parseval’s theorem, the correlation energy of the ith image can
be written as a quadratic form

Ei ¼ HHDiH, (3)

where Di is a diagonal matrix of size d� d whose diagonal
elements are the magnitude squared of the associated element of
Xi, that is, the power spectrum of xiðnÞ and the superscript H
denotes the Hermitian transpose. The objective of the MACE filter
is to minimize the average correlation energy over all signals
while simultaneously satisfying intensity constraint at the origin
for each signal. The value of the correlation at the origin can be
written as

gið0Þ ¼ XH
i H ¼ ci (4)

for all i ¼ 1;2; . . . ;N training images, where ci is the user specified
output correlation value at the origin for the ith image. Then the
average energy over all training images is expressed as

Eavg ¼ HHDH, (5)

where

D ¼
1

N

XN

i¼1

Di. (6)

The MACE design problem is to minimize Eavg while satisfying the
constraint, XHH ¼ c, where c ¼ ½c1; c2; . . . ; cN� is an N-dimensional
vector. This optimization problem can be solved using Lagrange
multipliers, and the solution is

H ¼ D�1XðXHD�1XÞ�1c. (7)

It is clear that h can be obtained from H by an inverse DFT. Once h
is determined, we apply an appropriate threshold to the output
correlation plane and decide on the class of the test image.

3. Nonlinear version of the MACE in RKHS using correntropy

3.1. Correntropy function in RKHS

Cross correntropy or simply correntropy [33] is a generalized
similarity measure between two arbitrary vector random vari-
ables X and Y defined as

VðX;YÞ ¼ E½ksðX � YÞ�, (8)

where E is the mathematical expectation and ks is the Gaussian
kernel given by

ksðX � YÞ ¼
1ffiffiffiffiffiffi
2p
p

s
exp �

kX � Yk2

2s2

� �
, (9)
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