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Available online 22 August 2008 As a novel multiscale geometric analysis tool, contourlet has shown many advantages over the

conventional image representation methods. In this paper, a new fusion algorithm for multimodal
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Image fusion medical images based on contourlet transform is proposed. All fusion operations are performed in
Medical image contourlet domain. A novel contourlet contrast measurement is developed, which is proved to be more
Multimodality suitable for human vision system. Other fusion rules like local energy, weighted average and selection

Contourlet transform are combined with “region” idea for coefficient selection in the lowpass and highpass subbands, which
can preserve more details in source images and further improve the quality of fused image. The final
fusion image is obtained by directly applying inverse contourlet transform to the fused lowpass and
highpass subbands. Extensive fusion experiments have been made on three groups of multimodality

CT/MR dataset, both visual and quantitative analysis show that comparing with conventional image

fusion algorithms, the proposed approach can provide a more satisfactory fusion outcome.

© 2008 Published by Elsevier B.V.

1. Introduction

Medical imaging is taking on an increasingly critical role in
healthcare. Technological advances in medical imaging in the past
two decades have enabled radiologists to quickly acquire images
of the human body and its internal structures with unprecedented
resolution and realism. X-ray computed tomography (CT) has
become popular because of its ability to visualize dense structures
like bones and implants with less distortion, but it cannot detect
physiological changes. Normal and pathological soft tissue are
better visualized by magnetic resonance (MR) image, and the
positive electron tomography (PET) provides better information
on blood flow and flood activity with low spatial resolution [1]. In
medical diagnosis, treatment planning and evaluation, the
complementary information in images of different modalities is
often needed. For example, combined PET/CT imaging can
concurrently visualize anatomical and physiological characteris-
tics of the human body. In oncology, they are used to view tumor
activity in conjunction with anatomical references, allowing
physicians to better understand the effects of cancer treatment.
Combined PET/CT imaging is also very useful in organ diagnosis,
where tumor boundaries can be difficult to discern.
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Therefore, the multimodality medical image fusion has been
emerging as a new and promising research area in recent years
[2,14,13]. Image fusion aims at integrating information from
multiple modality images to obtain a more complete and accurate
description of the same object. It provides easy access to the PET/
CT/MRI images at the same location where reading from all other
modalities is done, allowing radiologists to quickly and efficiently
report PET/CT/MRI studies.

So far, extensive researches have been made on image fusion
technique, and various fusion algorithms for medical image have
been developed. Depending on the merging stage, common image
fusion schemes can be classified into three categories: pixel level,
feature level, and decision level. Medical image fusion usually
employs the pixel level fusion techniques. The most well-known
algorithms include principal component analysis (PCA) [9], Brovey
transform method and Laplacian pyramid (LP)/contrast pyramid
(CP) filtering [16]. Since image features sensitive to human visual
system exist in different scales, multiresolution analysis is more
suitable for image fusion. The development in wavelet analysis
provides a potential solution [10,17]. Numerous wavelet-based
image fusion algorithms have been proposed. Wavelet can be seen
as an optimal tool for analyzing one-dimensional (1-D) piecewise
smooth signals, however, it has serious limitations in dealing with
high dimensional signal like images. In natural images, disconti-
nuity points are typically positioned along object boundaries
and smooth edges. As a tense-product of 1-D wavelet, two-
dimensional (2-D) separate wavelet is only good at isolating the
discontinuities at object edges, but cannot detect the smoothness
along the edges. On the other hand, 2-D separable wavelet
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decomposes image in only three directional highpass subbands,
namely, vertical, horizontal and diagonal, which means that
wavelet can only capture limited directional information. So
wavelet-based fusion scheme cannot preserve the salient features
in source images very well and will probably introduce some
artifacts and inconsistency in the fused results.

Recently, a theory for high dimensional signals called multi-
scale geometric analysis (MGA) has been developed. Several MGA
tools were proposed, such as ridgelet (Candes, 1998) [5], curvelet
(Donoho, 1999) [15] and bandelet (Mallat, 2000), etc. In 2001,
contourlet [7] was pioneered by Do and Vetterli as the latest
MGA tool. Contourlet is a “true” 2-D sparse representation for
2-D signals like images. The overall result of contourlet transform
is a sparse image expansion expressed by contour segments, so it
can capture 2-D geometrical structures in visual information
much more effectively than traditional multiresolution analysis
methods.

In this paper, a novel pixel-level fusion algorithm for multi-
modality medical image based on contourlet transform is
developed. Region-based contourlet contrast, local energy and
weighted averaging are incorporated as the fusion rules. Experi-
mental results show that the proposed contourlet-based fusion
algorithm provides an effective way to enable more accurate
analysis of multimodality images.

2. Contourlet construction

Do and Vetterli found that to obtain a sparser representation
for 2-D piecewise smooth functions in R?, an effective method is
to utilize a double filter bank scheme [6], that is, first apply a
multiscale decomposition to capture point discontinuities; and
then perform a local directional decomposition to synthesize the
nearby edge points into independent contour segments. With a
rich set of basis oriented at various directions and scales,
contourlet can effectively capture the intrinsic contours and edges
in natural images whose traditional multiresolution analysis
methods are difficult to handle. Figs. 1 and 2 depict the block
structure and frequency partition of contourlet transform, here
8-direction directional decomposition is applied in the finest
scale, subbands 1-4 correspond to the mostly horizontal direc-
tions, while subbands 5-8 correspond to the mostly vertical
directions. Contourlet offers a much richer subband set of
different directions and shapes, which helps to capture geometric
structures in images much more efficiently.

In the first stage of contourlet transform, the LP [4] is used for
subband decomposition. As shown in Fig. 3, the input image x is
first lowpass filtered by filter H and then downsampled to produce
a coarse approximation c. It is then interpolated and passed
through the synthesis filter G. The resulting image is subtracted
from the original image x to obtain the bandpass image d. This
process can be iterated repeatedly on the coarser version of the
image c. It can be seen that the LP decomposition at each step
generates a sampled lowpass version of the original image and the
difference between the original and the prediction, resulting in a
bandpass high frequency image. Therefore, the L2(R?) space is
decomposed into a series of subspace with increasing resolutions:
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where V; is the approximation subspace at the scale 2o, Wi is the
detail in the finer scale 2~'. In the LP, each subspace W; is
spanned by a frame {,u]n(t)}ngzz that utilizes a uniform grid on R?
of intervals 271 x 271
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Fig. 1. Block diagram of contourlet transform.
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Fig. 2. Frequency partition of contourlet transform.
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Fig. 3. Construction of LP.

Directional filter bank (DFB) [3] is used in the second stage to
link the edge points into linear structures, which involves
modulating the input image and using quincunx filter banks
(QFB) with diamond-shaped filters. A I-level tree-structured DFB
is equivalent to a 2 parallel channel filter bank with equivalent
filters and overall sampling matrices as shown in Fig. 4. The
equivalent analysis and synthesis filters are denoted using H; and
Gk, 0<k<2™, corresponding to the subbands indexed as shown
in Fig. 2.

A I-level DFB generates a perfect directional basis for discrete
signal in [%(Z%) that is composed of the impulse responses
of 2 directional synthesis filters and their shift. They can be
represented as
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