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a b s t r a c t

This paper focuses on finite-time recurrent neural networks with continuous but non-smooth activation
function solving nonlinearly constrained optimization problems. Firstly, definition of finite-time stability
and finite-time convergence criteria are reviewed. Secondly, a finite-time recurrent neural network is
proposed to solve the nonlinear optimization problem. It is shown that the proposed recurrent neural
network is globally finite-time stable under the condition that the Hessian matrix of the associated
Lagrangian function is positive definite. Its output converges to a minimum solution globally and finite-
time, which means that the actual minimum solution can be derived in finite-time period. In addition,
our recurrent neural network is applied to a hydrothermal scheduling problem. Compared with other
methods, a lower consumption scheme can be derived in finite-time interval. At last, numerical simu-
lations demonstrate the superiority and effectiveness of our proposed neural networks by solving
nonlinear optimization problems with inequality constraints.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear constrained optimization problems are widely
applied in the fields of science and engineering [1], for example,
electrical networks planning, optimal control, mechanical design,
hydrothermal scheduling, structure design and so on. In the past
decades, numerical methods have been proposed to solve non-
linear convex optimization problems and approximate optimal
solutions could be derived [2–4]. However, it is usual imperative to
require real-time solutions in many applications. Because of
parallel-distributed character and hardware-realization amenity,
recurrent neural networks are capable of real-time computing and
have been applied in solving nonlinear optimization problems
with inequality constraints.

Different from traditional numerical optimization algorithms,
recurrent neural networks governed by dynamic equations can
apply directly the techniques of the numerical ODE and the
dynamic to solve constrained optimization problems effectively. In
what follows, we give a detailed introduction for the development
of recurrent neural networks. In 1986, Hopfield firstly presented a
neural network to solve linear programming problems [5]. In order
to solve nonlinear convex programming problems, Kennedy

proposed a neural network with a finite penalty parameter [6].
Although the Kuhn–Tucker optimal conditions hold for Kennedy's
and Hopfield's, this neural network with a finite penalty parameter
cannot find the exact optimal solution. In addition, it is difficult to
implement the neural network with a very large penalty parameter
[7]. In order to overcome the imperfection, some scholars attemp-
ted to design neural networks without penalty parameter. For
example, Rodriguez designed a switched-capacitor neural network
to solve a class of optimization problems with nonlinear convex
constraints [8]. For convex quadratic optimization problems with
bounded constraints, Bouzerdoum presented a recurrent neural
network to solve them [9]. Zhang proposed a Lagrange neural
network to deal with nonlinear programming problems with
equality constraints [10]. Especially, a projection neural network is
developed to solve monotone variational inequality problems with
limit constraints [11,12]. By extending the projection neural net-
work, two recurrent neural networks for solving strictly convex
programming with nonlinear inequality constraints and linear
constraints were presented in [13,14], respectively. The projection
neural network was also used to solve pseudomonotone variational
inequality problems in [15]. The above recurrent neural networks
are proposed to solve linear or nonlinear convex problems. But,
many optimization problems may be nonconvex or nonsmooth in
the engineering application fields, so it is interesting to study
recurrent neural networks to solve nonconvex or nonsmooth
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optimization problems. Recently, some neural network models
dealing with these optimization problems are proposed in [16–21].

It should be noted that all the above mentioned neural net-
works are asymptotically stable or exponentially stable, which
means that the exact solutions can be obtained when time goes to
infinity. In order to accelerate the convergent speed, some neural
networks with finite-time convergent properties are explored. For
example, Cheng et al. presented a recurrent neural network with a
specific nonlinear unit to deal with convex optimization problems
[22]. The proposed neural network converges to the optimal
solution in a finite-time interval. The computation efficiency is
increased dramatically as well. A finite-time convergent neural
network has also been proposed to solve quadratic programming
problems [23]. The actual optimal solutions can be derived in finite
time interval. However, the neural networks proposed in [23] only
deal with convex optimization problems. In this paper, in order to
overcome these problems, we design a finite-time recurrent
neural network based on the authors' previous work [24–26], to
solve nonlinear nonconvex optimization problems. Under the
condition that the Hessian matrix of the associated Lagrangian
function is positive definite, we prove that the proposed recurrent
neural network is globally finite-time stable. Then, the actual
minimum solution can be derived in finite-time period. In addi-
tion, our recurrent neural network is applied to a hydrothermal
scheduling problem. It is shown the superiority and effectiveness
of our proposed neural networks by solving nonlinear optimiza-
tion problems with inequality constraints.

This paper is organized as follows. In Section 2, definition of
finite-time stability and finite-time convergence criteria are
reviewed. In Section 3, we present a finite-time recurrent neural
network to solve nonlinearly constrained optimization problems.
In Section 4, our method is applied to solve a short-time hydro-
thermal scheduling problem. Numerical simulations and a test
hydrothermal system are given to show the effectiveness of our
methods in Section 5. Section 6 concludes the paper.

2. Preliminaries

For the system:

_xðtÞ ¼ f ðxðtÞÞ; f ð0Þ ¼ 0; xARn; xð0Þ ¼ x0; ð1Þ
where f : D-Rn denotes a continuous function defined on an open
neighborhood D such that 0AD, we give the following definition
of finite-time stability and finite-time stable criterion.

Definition 1 (Bhat and Bernstein [27], Shen and Xia [28]). If there
exists an open neighborhood U such that 0AU, and a function
Tx : U⧹0-ð0;1Þ, such that every solution xðt; x0Þ of (1) with the
initial point x0AU⧹0 is well-defined and unique in forward time
for tA ½0; Txðx0ÞÞ, limt-Txðx0Þxðt; x0Þ ¼ 0, and xðt; x0Þ ¼ 0 for tZTxðx0Þ,
then the system (1) finite-time converges to the equilibrium x¼0,
Txðx0Þ denotes the convergent time. The equilibrium of (1) is finite-
time stable if it is Lyapunov stable and finite-time convergent. In
addition, the origin is a globally finite-time stable equilibrium
when U ¼D¼ Rn.

Lemma 1 (Bhat and Bernstein [27]). If there exists a positive definite
function V(x) defined on a neighborhood U � Rn of the origin, two
real numbers k40 and 0oro1 satisfying

_V ðxÞr�kVðxÞr ; 8xAU; ð2Þ
then, the origin of system (1) is finite-time stable. Moreover, the
upper bound of the convergence time T1 satisfies

T1r
Vðx0Þ1� r

kð1�rÞ ; 8x0AU: ð3Þ

If U ¼ Rn and V(x) is radially unbounded, the origin of system (1) is
globally finite-time stable.

The following lemma will be used in the proof of our main
results.

Lemma 2 (Clarke [29]). Let f : Rn-R be continuously differentiable.
Then maxf0; f ðxÞg is a regular function, its Clarkes generalized
gradient is given as follows:

∂maxf0; f ðxÞg ¼
∇f ðxÞ if f ðxÞ40;
½0;1�∇f ðxÞ if f ðxÞ ¼ 0;
0 if f ðxÞo0:

8><
>: ð4Þ

3. Finite-time recurrent neural network

In this section, we consider the following nonlinear optimiza-
tion problem (NOP):

minimize f ðxÞ; ð5aÞ

subject to cðxÞr0; xZ0; ð5bÞ
where f : Rn-R, cðxÞ ¼ ½c1ðxÞ;…; cmðxÞ�T , xARn. In this paper, we
assume that f and ci are twice differentiable, and there exists at
least a local optimal solution to the NOP.

It is clear that the NOP is a convex programming problem (CPP)
if f(x) and ci(x) are all convex, otherwise, the NOP is a nonconvex
programming problem (NCPP). From [9], we have that if xn is a
local optimal solution to the NOP, then there exits ynARm such
that ðxn; ynÞ is a Karush–Kuhn–Tucker (KKT) point satisfying the
following conditions:

yZ0; cðxÞr0; xZ0;
∇f ðxÞþ∇cðxÞyZ0; yTcðxÞ ¼ 0;

(
ð6Þ

where ∇cðxÞ and ∇f ðxÞ are the gradient of x. By the projection
theorem [30], the following projection equations can be used to
replace (6):

ðx�ð∇f ðxÞþ∇cðxÞyÞÞþ �x¼ 0;
ðyþcðxÞÞþ �y¼ 0;

(
ð7Þ

where xþ ¼maxf0; xg.
Let z¼ ðx; yÞT , zþ ¼ ðxþ ; yþ ÞT and ~z ¼ ð ~x; ~yÞT ¼ ðð∇f ðxþ Þþ

∇cðxþ Þyþ Þ; �cðxþ ÞÞT . If and only if zn ¼ ðxn; ynÞ satisfies (7), then zn

is a KKT point of the NOP. Furthermore, zn is a KKT point if zn is
also a solution to the variational inequality problem:

ðz�znÞFðznÞZ ; 8zZ0: ð8Þ
where FðznÞ ¼ ½∇f ðxnÞþ∇cðxnÞyn; �cðxnÞ�.

Next, we design the following finite-time recurrent neural
network to solve (5) by extending the ODE method in [31]:

state equation _zðtÞ ¼ �εF ðz�zþ þ ~zÞ; ð9aÞ

output equation xðtÞ ¼ xþ ; ð9bÞ
where ε40 is a parameter and the activation function F ðxÞ is
defined as

F ðxÞ ¼ signðxÞjxj r ; ð10Þ
where 0oro1 is a real number, for x¼ ðx1; x2;…; xnÞT , F ðxÞ ¼
ðF ðx1Þ;F ðx2Þ;…;F ðxnÞÞT and signðxÞ ¼ ðsignðx1Þ; signðx2Þ;…;
signðxnÞÞT .

We can use a recurrent neural network with a one-layer
structure to realize the dynamical state equation expressed by
(9). The circuit used to realize the neural network has nþm inte-
grators processors, nþm continuous but nonsmooth activation
functions processors for z, nþm processors for zþ and nþm
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