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a b s t r a c t

Breast cancer is one of the most common malignant tumors among female. How to effectively dis-
criminate the category of the cancers using the key features/factors is very important in the diagnosis
and prediction. In this paper, Jointly Sparse Discriminant Analysis (JSDA) is proposed to explore the key
factors in breast cancer and extract the key features for improving the accuracy in diagnosis and pre-
diction. JSDA introduces the jointly sparse regular term (i.e. L2;1-norms term) to the criterion. A con-
vergent iterative algorithm is designed to solve the optimization problem. It is shown that the proposed
JSDA algorithm not only can learn the jointly sparse discriminant vectors to explore the key factors of the
breast cancer in cancer pathologic diagnosis, but also can improve the diagnosis accuracy compared with
the classical feature extraction and discriminant analysis algorithm. Experimental results on breast
cancer datasets indicate that JSDA outperforms some well-known subspace learning algorithms in pre-
diction accuracy, not matter they are non-sparse or sparse, particularly in the cases of small sample sizes.
Data analysis shows that the key factors of the breast cancer explored by the JSDA are consistent with the
practical experience.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

BREAST cancer feature extraction and feature analysis are of vital
importance for cancer diagnosis, classification, and prediction. On the
one hand, the information of tumor features can help the doctor
discriminate category of the breast tumor (i.e. benign or malignant).
On the other hand, since the breast cancer patients often encounter
the high recurrence rate, it is of vital importance to predict the pos-
sibility of the recurrence. Moreover, it is also very important to
explore which factors are the key variables associated with the
categories and prediction of the breast cancer. Therefore, we aim to
develop a computer-aided diagnosis method that can help the doctor
determine the cancer’s categories or to predict the recurrence rate [1].
One tractable method is to use the feature extraction and dis-
criminant analysis technique to perform computer-aided diagnosis.

The classical feature extraction methods such as Principle
Component Analysis (PCA) [2–4] and Linear Discriminant Analysis
(LDA) [5–7] and its variations [8,9] are the most frequently used in
the fields of pattern recognition, computer vision and data mining.

PCA and LDA were widely used in various fields including face
recognition, palmprint recognition and gene expression data
classification. For example, Ma and Kosorok used PCA to identify
differential gene pathways [10]. The classical methods (i.e. PCA
and LDA) only focus on the global structure of a dataset for
dimensionality reduction.

In recent years, classifier design based on regression methods
became a hot topic and a number of effective classification
methers were proposed [11–13]. Paticlarly, sparse representation
has been paid much attention on classifier design and feature
extraction. For example, the sparse representation classifier was
proposed for robust face recognition [14,15]. Qiao et al. introduced
theL1 norm sparse learning to learn the optimal representation
and proposed Sparsity Preserving Projections (SPP) [16] for face
feature extraction, in which the sparse reconstruction relationship
was preserved. Gui et al. used the label information and L1 norm
sparse representation [17] for supervised feature extraction. In
addition, the sparse L1 graph was also used in subspace learning
[18,19], spectral clustering [20] and label propagation [21].

However, the classical methods (i.e. PCA and LDA) and L1
graph-based methods (i.e. SPP and its supervised extension [17])
in linear dimensionality reduction can only learn compact pro-
jections (i.e. elements in the projections are usually non-zero).
Thus, such projections lack reasonable interpretation. In order to
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overcome this drawback in these compact subspace learning
methods, the L1 norm based sparse regression methods [22–24]
were proposed to learn the sparse projections for feature extrac-
tion and classification. It is experimentally shown that these
sparse learning methods not only can enhance the prediction
accuracy but also strengthen the generalization ability and the
robustness on prediction. Therefore, sparse subspace learning
methods have attracted much attention.

Among the sparse extensions of the classic feature extraction
methods, the well-known ones are Sparse PCA (SPCA) [25], Mul-
tilinear SPCA (MSPCA) [26] and Sparse Discriminant Analysis
(SDA) [27]. In SPCA and MSPCA, the L1norm penalty is imposed on
the regression-type optimization problem derived from PCA to
learn the sparse projections, which contain most of the variance of
the dataset. SDA [27] rewrites the ridge regression using the label
matrix for sparse discriminant projection learning. By using the
Elastic Net [24] for regression, the most important/contributive
variables are selected to form the projection vectors in SPCA,SDA
and SLDA.

Although SPCA and SDA can obtain a set of sparse projections
for feature analysis, the non-zero elements in the projections are
usually different from their locations. Thus, SPCA and SDA cannot
give the consistent interpretation in the features or variables level.
To address this problem, Nie et al. proposed the Robust Feature
Selection (RFS) [28] via joint L2;1-norm learning. It is shown that
the L2;1-norm based regression is robust to outliers and can select
features across all data points with joint sparsity. Recently, Gu
et al. [29] proposed to used the joint Feature Selection and Sub-
space Learning (FSSL) method for image recognition. With these
efficient methods for solving the L2;1-norm based learning model,
joint feature selection and feature extraction methods were widely
used in image recognition [30–32], web image annotation [33] and
multimedia data understanding [34].

In the past decades, feature selection and discrimination have
been very active primarily due to the advances in bioinformatics
where a large amount of genomic and proteomic datum are pro-
duced for biological and biomedical studies. For example, in
genomics, to select a few of relevant genes out of several thou-
sands of genes becomes a key problem. And to identify the
meaningful proteomic features from mass spectrometry is crucial
for disease diagnosis and protein-based biomarker profiling [35].

As one of the most frequently met diseases, breast cancer has
been widely investigated for several decades. In this paper, we
focus on the breast cancer feature analysis and discrimination for
diagnosis using the newly proposed L2;1-norm based feature
selection and discriminant analysis for helping diagnosis and data
understanding. Concretely, we explore the important factors in a
sparse manner on breast cancer feature extraction and dis-
crimination (i.e. diagnosis), where only the key features related to
the discriminant information are jointly extracted in the sparse
manner. And thus it is expected to further improve the under-
standing of the cancer data and strengthen the generalization
ability and the robustness for discrimination. By integrating the
L2;1-norm penalty term on the Maximal Margin Criterion (MMC)
[36,37], a new model is proposed for effective breast cancer
diagnosis. The main contributions of this paper are as follows:

(1) We propose a general jointly sparse subspace discriminant
analysis method called Jointly Sparse Discriminant Analysis (JSDA)
for breast cancer data diagnosis and the key feature/factor
extraction and understanding. And the convergence analysis is
also presented for the proposed JSDA, which indicates that JSDA
will converge to the local optimum.

(2) Extensive experiments show that JSDA outperforms the
classical subspace learning methods and the sparse ones for breast
cancer identification. Moreover, the key information embedded in
the breast cancer data is explored, which will be very important to

the diagnosis. Factor analysis results are consistent with the doc-
tor’s practical experience.

The rest of the paper is organized as follows. In Section 2, LDA
and MMC are reviewed. In Section 3, SJDA is proposed and theo-
retical analysis is presented to guarantee the convergence of the
proposed algorithm. Experiments are carried out to evaluate SJDA
algorithm in Section 4, and the conclusions are given in Section 5.

2. Outline of LDA and MMC

In this section, LDA and MMC are reviewed. Let matrix X ¼ ½x1; x2
; :::; xN � be the data matrix including all the training samples
fxigNi ¼ 1ARmin its columns. In practice, the feature dimension m is
often very high. The goal of feature extraction is to transform the data
from the originally high-dimensional space to a low-dimensional
one, i.e.

y¼ UTxARd ð1Þ
for any xARm with doom, where U ¼ ðu1;u2; :::;udÞand
uiði¼ 1; :::;dÞis an m-dimension column vector.

2.1. LDA

LDA is a supervised learning algorithmwhich aims to maximize
the ratio between the between-class scatter and the within-class
scatter. Let c denote the total number of classes and li denote the
number of training samples in the i-th class. Letxji, denote the j-th
sample in i-th class, x be the mean of all the training samples, xi be
the mean of the i-th class. The between-class and within-class
scatter matrices can be evaluated by:

Sb ¼
Xc

i ¼ 1
liðxi�xÞðxi�xÞT ð2Þ

Sw ¼
Xc

i ¼ 1

Xli
j ¼ 1

ðxji�xiÞðxji�xiÞT ð3Þ

LDA aims to find an optimal projection U such that the ratio of
the between-class scatter to within-class scatter is maximized, i.e.

U ¼ arg max
U

UTSbU
��� ���
UTSwU
��� ��� ð4Þ

where U ¼ fui j i¼ 1;2; :::; dgis the set of generalized eigenvectors of
Sb and Sw corresponding to the d largest generalized eigenvalues
fλi j i¼ 1;2; :::; dg, i.e.
Sbui ¼ λiSwui ; i¼ 1;2; :::; d ð5Þ

Once the optimal projection matrix U is obtained, the high-
dimensional patterns can be projected to the low-dimensional
subspace for classification.

2.2. MMC

LDA always encounters the small sample size problem when
the feature dimensions are larger than the number of samples. In
order to overcome the irregularity in computing the inverse of the
within-class scatter matrix, MMC uses the differential criterion to
compute the optimal projection which has the very similar func-
tion as LDA. The objective function of MMC is as follows:

max
u

uTSBu�uTSwu

s:t: uTu¼ 1 ð6Þ

where u is a column vector. By using the Lagrange multiplier
method, it is easily shown that the above optimization problem
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