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a b s t r a c t

Due to the theoretical advances and empirical successes, Multi-task Learning (MTL) has become a popular
design paradigm for training a set of tasks jointly. Through exploring the hidden relationships among
multiple tasks, many MTL algorithms have been developed to enhance learning performance. In general,
the complicated hidden relationships can be considered as a combination of two key structural elements:
task grouping and task outlier. Based on such task relationship, here we propose a generic MTL frame-
work with flexible structure regularization, which aims in relaxing any type of specific structure
assumptions. In particular, we directly impose a joint ℓ11=ℓ21-norm as the regularization term to reveal
the underlying task relationship in a flexible way. Such a flexible structure regularization term takes into
account any convex combination of grouping and outlier structural characteristics among the multiple
tasks. In order to derive efficient solutions for the generic MTL framework, we develop two algorithms,
i.e., the Iteratively Reweighted Least Square (IRLS) method and the Accelerated Proximal Gradient (APG)
method, with different emphasis and strength. In addition, the theoretical convergence and performance
guarantee are analyzed for both algorithms. Finally, extensive experiments over both synthetic and real
data, and the comparisons with several state-of-the-art algorithms demonstrate the superior perfor-
mance of the proposed generic MTL method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Realizing the existence of sparse training data and the task
correlations, multiple task learning (MTL) is designed to train
multiple models jointly and simultaneously, and often leads to
better learnt models than those trained independently. The key idea
of MTL is to explore the hidden relationships among multiple tasks
to enhance learning performance. MTL has been shown particularly
useful if there exist intrinsic relationships among multiple learning
tasks and the training data is inadequate for each single task. Due to
its empirical successes, MTL has been applied to various application
domains, including social media categorization and search [12,54],
fine-grained visual categorization [42], disease modeling and pre-
diction [8,63], spam filtering [3], reinforcement learning [9] and
even financial stock selection [19].

The key ingredient of MTL is to explore model commonality
among the multiple learning tasks, and use such model com-
monality to improve the learning performance. Some earlier MTL
work assume that there is a common structure or a common set of

parameters shared by all the learning tasks [51,52]. However,
sharing a model commonality among all the learning tasks is a
fairly strong assumption, which is often invalid in real applica-
tions. Therefore, two compromised yet more realistic scenarios,
i.e., task grouping and task outlier, have been explored recently. For
task grouping, one assumes that the commonality only exists
among tasks within the same group. During the learning process,
through identifying such task groups, the unrelated tasks from
different groups will not influence each other [21,23,52,55]. In the
task outlier scenario [13], a robust MTL algorithm was proposed to
capture the commonality for a major group of tasks while
detecting the outlier tasks. A popular way to tackle the robust MTL
problem is to use a decomposition framework, which forms the
learning objective with a structure term and an outlier penalty
term. To efficiently solve the optimization problem, the target
model can be further decomposed into two components, reflecting
the major group structure and the outliers [22]. Representative
decomposition schemes for MTL include the low-rank structure
[13] and the group sparsity based approaches [20].

Note that the aforementioned assumptions of task grouping and
task outlier were exclusively considered in most of the existing
works. In other words, the task grouping based methods neglected
the existence of outlier tasks and many robust MTL frameworks
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only assumed the case of one major task group peppered with a
few outlier tasks. In this paper, we address MTL under a very
general setting where multiple major task groups and outlier tasks
could occur simultaneously. In particular, without decomposing
the target model, we directly impose a flexible structure regular-
ization term with a joint ℓ11=ℓ21-norm that reflects a mixture of
structure and outlier penalties. The final objective is formulated as
an unconstrained non-smooth convex problem and two efficient
algorithms, i.e., the Iteratively Reweighted Least Square (IRLS)
method and the Accelerated Proximal Gradient (APG) method, are
applied to derive optimal solutions with different strength. Parti-
cularly, the IRLS method can handle the learning process for a
large number of tasks efficiently, while the APG method provides
robust performance when the active features are either sparse or
dense. In addition, we provide theoretical analysis on both con-
vergence and performance bound of the proposed MTL method.
Finally, empirical studies on synthetic and real benchmark data-
sets corroborate that the proposed MTL learning method clearly
outperforms several state-of-the-art MTL approaches.

The remainder of this paper is organized as follows. Section 2
briefly reviews several major MTL schemes in the existing works.
Section 3 presents our proposed generic MTL framework and two
efficient solutions. Sections 4 and 5 provide theoretical analysis of
the proposed methods, including convergence properties and
performance bounds. Section 6 gives experimental validations and
comparative studies, and, finally, Section 7 concludes this paper.

2. Related work

Here, we first define notations used in this paper. Then we
briefly survey several major multi-task learning paradigms and
summarize their strengthness and weakness.

2.1. Notations

Assume the data is represented as a matrix XARd�n, where the
column vector xiARd is the i-th data point and d is the dimension.
In addition, we denote xi� as the i-th row of X, which corresponds
to the i-th feature of the data. The norm of matrix X is denoted as
JXJp;q ¼ ðPi‖xi�‖qpÞ1=q ¼ ðPið

P
jx

p
ijÞq=pÞ1=q. For example, JXJ2;1 ¼P

i Jxi� J2 ¼
P

ið
P

jx
2
ijÞ1=2.

In a typical setting of multiple task regression or classification,
we are given L tasks associated with training data fðX1; y1Þ;
…; ðXL; yLÞg, where XlARd�nl ; ylARnl are the input and response of
the l-th task with a total of nl samples. We want to employ MTL to

derive optimal prediction models for all the tasks simultaneously.
In particular, for linear regression models, the prediction model for
the l-th task is represented as f ðwl;XlÞ ¼X>

l wl. We then use a
coefficient matrix W¼ ½w1;w2;…;wL� to represent all the regres-
sion tasks. The goal of MTL is to derive an optimalWn across all the
learning tasks, and meanwhile satisfying desired structure
characteristics.

2.2. Shared model commonality

One of the straightforward ways for designing a MTL algorithm
is to assume that all the tasks share certain model commonality.
Typically, such commonality can be represented as shared com-
mon structures or parameters by the learned models. For instance,
structure commonality includes subspace sharing [28,35,40] and
feature set sharing [2,24,31,32,34,56,61,18]. In terms of the para-
meter commonality, it includes a wide range of options depending
on the used learning methods, such as the hidden units in neural
networks [10], kernels [17], the priors in hierarchical Bayesian
models [4,49,57,58,60], the parameters in Gaussian process cov-
ariance [26,43,50], the feature mapping matrices [1], and the
similarity metrics [39,59]. Fig. 1(a) demonstrates an example of the
feature sharing among the learned model W, where all the
learning tasks select the same subset of features. Through
exploring various types of model commonalities, either structures
or parameters, simultaneously learning multiple tasks will benefit
from the learning of each other. Hence, the MTL paradigm is
expected to achieve better generalization performance than
independently learning a prediction model for each task. However,
the real applications tend to have more complicated situations and
often there are not commonly shared structure or parameters
among all the tasks [47,38].

2.3. MTL with task grouping

Note that in many real applications for learning multi-tasks, the
tasks are gathered into several groups according to their related-
ness. Intuitively, the tasks in the same group are more related than
the tasks in different groups. As shown in Fig. 1(b), the learning
tasks form two groups, where the tasks within the same group
select the same subset of features and share no common features
with the tasks from the other group.

To deal with this scenario, one of the representative methods is
to use grouping matrices to model the task grouping effect

Fig. 1. The illustration of different target models W learned using various assumptions of task structures: (a) shared model commonality, (b) task grouping, (c) outlier tasks,
and (d) generic multi-tasks. Each column of W is corresponding to a single task and each row represents a feature dimension. For each element in W, white color means
zero-valued elements and gray color indicates non-zero values with the intensity indicating the magnitude of the values.
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