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a b s t r a c t

We propose and develop SG-ELM, a stable online learning algorithm based on stochastic gradients and
Extreme Learning Machines (ELM). We propose SG-ELM particularly for systems that are required to be
stable during learning; i.e., the estimated model parameters remain bounded during learning. We use a
Lyapunov approach to prove both asymptotic stability of estimation error and boundedness in the model
parameters suitable for identification of nonlinear dynamic systems. Using the Lyapunov approach, we
determine an upper bound for the learning rate of SG-ELM. The SG-ELM algorithm not only guarantees a
stable learning but also reduces the computational demand compared to the recursive least squares
based OS-ELM algorithm (Liang et al., 2006). In order to demonstrate the working of SG-ELM on a real-
world problem, an advanced combustion engine identification is considered. The algorithm is applied to
two case studies: An online regression learning for system identification of a Homogeneous Charge
Compression Ignition (HCCI) Engine and an online classification learning (with class imbalance) for
identifying the dynamic operating envelope. The case studies demonstrate that the accuracy of the
proposed SG-ELM is comparable to that of the OS-ELM approach but adds stability and a reduction in
computational effort.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Homogeneous Charge Compression Ignition (HCCI) Engines are
of significant interest to the automotive industry owing to their
ability to reduce emissions and fuel consumption significantly
compared to existing methods such as spark ignition (SI) and
compression ignition (CI) engines [1–3]. Although HCCI engines
tend to do well in laboratory controlled tests, practical imple-
mentation is quite challenging because HCCI engines do not have a
direct trigger for ignition (such as spark in SI or fuel injection in
CI). Further, HCCI requires some special engine designs such as
exhaust gas recirculation (EGR) [4], variable valve timings (VVT)
[5], intake charge heating [6] among others. Such advanced
designs also increase the complexity of the engine operation
making it unstable and extremely sensitive to operational dis-
turbances [7,8]. A model based control is typically opted to address
the challenges involved in controlling HCCI [9,5,10]. For model
development, both physics based approaches [9,5,10] and data

based approaches [11–14] were shown to be effective. A key
requirement for a model based control is the ability of the models
to accurately predict the engine state variables for several oper-
ating cycles ahead of time, so that a control action with a known
consequence can be applied to the engine. Further, in order to be
vigilant against the engine drifting towards instabilities such as
misfire, ringing, knock, etc. [15,16], the operating limits of the
engine particularly in transients, is required to be known. In order
to develop controllers and operate the engine in a stable manner,
both models of the engine state variables as well as the operating
envelope are necessary.

Data based modeling approaches for the HCCI engine state
variables and dynamic operating envelope were demonstrated
using neural networks [11], support vector machines [12], extreme
learning machines [13,14] by the authors. However, previous
research considered an offline approach where the data collected
from engine experiments were taken offline and models were
developed using computer workstations that had high processing
and memory. However, a key requirement in advancing HCCI
modeling is to perform online learning for the following reasons.
The models developed offline are valid only in the controlled
experimental conditions. For instance, the experiments are per-
formed at a controlled ambient temperature, pressure and
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humidity conditions. As a result, the models developed are valid
for the specified conditions and when the models are imple-
mented on a vehicle, the expectation is that the model works on a
wide range of climatic conditions that the vehicle is exposed to,
possibly on conditions that were not experimented. Hence, an
online adaptation to learn the behavior of the system at new/
unfamiliar situations is required. Also, since the offline models are
developed directly from experimental data, they may perform
poorly in certain operating regions where the density of experi-
mental data is low. As more data becomes available in such
regions, an online mechanism can be used to adapt to such data. In
addition, the engine produces high velocity streaming data;
operating at about 2500 revolutions per minute, an in-cylinder
pressure sensor can produce about 1.8 million data observations
per day. It becomes infeasible to store this volume of data for
offline model development. Thus, an online learning framework
that processes every data observation, updates the model and
discards the data is required for advanced engines like HCCI.

Online learning, as the name suggests, refers to obtaining a
model online; i.e., learning happens when the system is in
operation and as data is streaming in. Typically, the learning is
sequential; i.e., the data from the system is processed one-by-one
or batch-by-batch and the model parameters are updated. A data
processor on-board a combustion engine usually is low on com-
putation power and memory. Thus, simple linear models used to
be the natural choice for combustion engines. However, for a
system like the HCCI engine, linear models may be insufficient to
capture the complex dynamics, particularly for predicting several
steps ahead in time [11]. While numerous nonlinear methods for
online learning do exist in machine learning literature, a complete
survey is beyond the scope of this paper. The recent paper on
online sequential extreme learning machines (OS-ELM) [17] sur-
veys popular online learning algorithms in the context of classifi-
cation and regression and develops an efficient algorithm based on
recursive least squares. The OS-ELM algorithm appears to be the
present state of the art (although some variants have been pro-
posed such as [18–20]) for classification/regression problems
achieving a global optimal solution, high generalization accuracies
and most importantly, in quick time. Also, based on observations
from our previous work [21], we choose extreme learning
machines (ELM) over other popular methods such as neural net-
works and support vector machines for the HCCI engine problem.
It has been shown that both polynomial and linear methods were
inferior in terms of prediction accuracy [12,11] although they have
simple algorithms suitable for online applications. The online
variants of SVM usually work by approximating the batch (offline)
loss function so that data can be processed sequentially [22,23]
and achieve accuracies similar to that of the offline learning
counterparts. However, SVMs Come with a high computation and
memory requirement to be used efficiently on a memory limited
system such as the engine control unit [13]. Thus we prefer ELM
over SVM and other state of the art nonlinear models.

In spite of its known advantages, an over-parameterized ELM
may suffer from ill-conditioning problem when a recursive least
squares type update is performed (as in OS-ELM). This sometimes
results in poor regularization behavior as reported in
[24,25,20,26,27], which leads to an unbounded growth of the
model parameters and unbounded model predictions. This may
not be a serious problem for many applications as the model
usually improves as more data becomes available. However, for
control problems in particular, if decisions are made simulta-
neously based on the online learned model (as in adaptive control
[28]), it is critical that the parameter estimation algorithm behaves
in a stable manner so that control actions can be trusted at all
times. Hence a guarantee of stability and parameter boundedness
is of extreme importance. To address this issue, we propose the

SG-ELM, a stable online learning algorithm based on stochastic
gradient descent and extreme learning machines. By extending
ELM to include a notion of stable learning, we hope that the
simplicity and generalization power of ELM can be retained along
with stability of identification, suitable for real-time control
applications. We use a Lyapunov approach to prove both asymp-
totic stability of estimation error and boundedness in the esti-
mated parameters suitable for identification of nonlinear dynamic
systems. Using the Lyapunov approach, we determine an upper
bound for the learning rate of SG-ELM that seems to avoid bad
regularization that may arise during online learning. These are the
main contributions of this paper. Further, we also apply the SG-
ELM algorithm to two real-world HCCI identification problems
including online state estimation and online operating boundary
estimation which is a novel application of online extreme learning
machines.

The remainder of the article is organized as follows. The ELM
modeling approach is described in Section 2 along with algorithm
details on batch (offline) learning as well as the present state of
the art; the OS-ELM algorithm. In Section 3, the stochastic gradient
based ELM algorithm is derived along with a stability proof. In
Section 4, the background on HCCI engine and experimentation
are discussed. Sections 5 and 6 cover the discussions on the
application of the SG-ELM algorithm on the two applications,
followed by conclusions in Section 7.

2. Extreme learning machines

Extreme Learning Machine (ELM) is an emerging learning
paradigm for multi-class classification and regression problems
[29,30]. An advantage of the ELM method is that the training
speed is extremely fast, thanks to the random assignment of input
layer parameters which do not require adaptation to the data. In
such a setup, the output layer parameters can be analytically
determined using a linear least squares approach. Some of the
attractive features of ELM [29] include the universal approxima-
tion capability of ELM, the convex optimization problem of ELM
resulting in the smallest training error without getting trapped in
local minima, closed form solution of ELM eliminating iterative
training and better generalization capability of ELM [30]. In com-
parison, a backpropagation neural network has the same objective
function as that of ELM but they often get trapped in local minima
whereas ELM do not. Support vector machines on the other hand,
solves a convex optimization problem but the computation
involved is quite high and running times are slow for large data-
sets. Thus, ELM appears to be very efficient both in terms of
accuracy and running times compared to several state-of-the-art
algorithms.

Consider the following data set

fðx1; y1Þ;…; ðxN ; yNÞgA X ;Yð Þ; ð1Þ
where N denotes the number of training samples, X denotes the
space of the input features and Y denotes labels whose nature
differentiate the learning problem in hand. For instance, if Y takes
integer values ð1;2;3 ,.. g then the problem is referred to as clas-
sification and if Y takes real values, it becomes a regression pro-
blem. ELMs are well suited for solving both regression and clas-
sification problems faster than state of the art algorithms [30]. A
further distinction could be made depending on the availability of
training data during the learning process, as offline learning (or
batch learning) and online learning (or sequential learning). Off-
line learning could make use of all training data simultaneously as
all data is available to the algorithm and time is generally not a
limiting factor. So it is possible to have the model see the data
several times (iterations) so that the best accuracy can be
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