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a b s t r a c t

The model predictive control (MPC) is implemented by repeatedly solving an open loop optimal control
problem (OCP). For the real-time implementation, the OCP is often discretized with evenly spaced time
grids. This evenly spaced discretization, however, is accurate only if sufficiently small sampling time is
used, which leads to heavy computational load. This paper presents a method to efficiently and accu-
rately compute the continuous-time MPC problem based on the pseudospectral discretization, which
utilizes unevenly spaced collocation points. The predictive horizon is virtually doubled by augmenting a
mirrored horizon such that denser collocation points can be used towards the current time step, and
sparser points can be used towards the end time of predictive horizon. Then, both state and control
variables are approximated by Lagrange polynomials at only a half of LGL (Legendre–Gauss–Lobatto)
collocation points. This implies that high accuracy can be achieved with a much less number of collo-
cation points, which results in much reduced computational load. Examples are used to demonstrate its
advantages over the evenly spaced discretization.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model predictive control (MPC) is implemented by repeatedly
solving an open-loop optimal control problem (OCP) and using the
first element of the optimized control sequence as the current
control action [1]. This class of controllers has received wide
applications in the process industries since 1980s [2]. The main
advantage of MPC is its ability to explicitly handle constraints on
controls and states and achieve optimized control inside admis-
sible sets. Generally, the plant dynamics are described in the
continuous time representation by resorting to first principle
equations. For the real-life implementation, however, discrete-
time descriptions are required, and the continuous time problem
must be converted into a discrete time problem for the computer
environment [3].

The typical approach for this conversion is to discretize the
plant model, constraints, and cost function at evenly spaced time
points. The evenly spaced discretization approach has been widely
used in the literature, e.g. Chen and Allgower [4], Muske and
Badgwell [5], Qin and Badgwell [6] and Scattolini [7]. In these
studies, the system behaviors between two consecutive sampling
points are usually approximated by using either zero order hold

(ZOH) or first order hold (FOH), which are the two lowest order
approximation methods [8,9]. For reduced computational efforts,
some studies used discretization methods with unevenly spaced
points, e.g. moving blocking strategy [10,11]. They, however, share
the same approximation methods, ZOH and FOH, which leads to
significant state prediction and control errors. Hence, small sam-
pling time is necessary in order to achieve sufficiently high levels
of accuracy, which results in high computational load.

In this study, we will discretize the continuous-time MPC with
unevenly spaced grid points. The unevenly spaced discretization
relies on the known pseudospectral approach, which enables to
use high order polynomials to approximate states and controls.
The high order approximation provides more flexibility to describe
the system behavior between two points, thus effectively avoiding
the shortcomings of lower order counterpart. In theory, the dis-
cretized NLP converges to the OCP at a spectral rate with the
number of collocation points [12].

The pseudospectral method was first applied to optimal con-
trol problems in the late 1980s. The use of Chebyshev polynomial
as interpolation basis is the first method [13]. Recently, the
majority have employed Lagrange polynomials as basis functions,
which are often categorized into three types: Legendre–Gauss–
Lobatto (LGL) method, Legendre–Gauss (LG) method, and
Legendre–Gauss–Radau (LGR) method [12]. The first type uses
the family of Lobatto quadrature. The collocation points of LGL,
defined on the closed interval ½�1;1�, are the roots of the
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derivative of N th-degree Legendre polynomial, i.e., _LNðtÞ, toge-
ther with �1 and 1. Several variants has been presented before,
including [14,15] and [16]. A more general version is the Jacobi
pseudospectral method presented by [17]. The second type uses
the family of Gauss quadrature [18–20]. The collocation points of
LG, defined on the open interval �1;1ð Þ, are the zeros of N th-
degree Legendre polynomial LNðtÞ, so that the endpoints of inte-
gration interval are not included. The third type uses the family of
Radau quadrature [21,22]. The collocation points of LGR, defined
on the half-open interval ð�1;1�, are the roots of LN�1 tð ÞþLNðtÞ,
which only contains one end point. Upon cursory examination it
might appear as if LGL, LG and LGR collocation are essentially
similar, with only minor difference on whether contains end
points. It has been shown by Garg et al. that the differences
between three schemes are not merely cosmetic [31]. The LGL
collocation leads to a different mathematical form as compared
with either LG or LGR. As a result, LGL has different convergence
properties from LG and LGR. As pointed out by Garg et al., the
main differences are: (1) The differentiation matrices of LG and
LGR are rectangular and full-rank, whereas that of LGL is square
and singular. Therefore, LG and LGR can be written equivalently
in either differential or implicit integral form while LGL does not
have an equivalent implicit integral from. (2) The differentiation
matrix of LGL is rank deficient. This rank-deficiency leads to a
transformed adjoint system that is also rank-deficient, which can
yield dual solutions that oscillate about the true solution. Con-
versely, LG and LGR lead to full-rank transformed adjoint systems
which in turn yield approximations that converge to the true
solution. (3) There is a fundamental difference on costate esti-
mation between LGL and LGR/LG. The aforementioned oscillatory
property also affects the estimation of costate estimation, which
naturally attributes to the null space of the LGL transformed
adjoint system. This is because that the discrete costate dynamics
form a linear system of equations in terms of Lagrange multiplier.
In LGL, the matrix in the equations has a null space and therefore
there exists a infinite number of solutions to LGL costate
dynamics. Despite the null space in LGL, many numerical exam-
ples have demonstrated that LGL has convergent approximations
to state and control. The convector mapping theorem by Gong
et al. [24] has pointed out that any solution of first-order
optimality condition for continuous system approximately satis-
fies the first-order optimality condition for discrete LGL problem,
and therefore the error tends to zero as N-1. Moreover, Gong
et al. [24] proposes a closure condition for selecting a good
approximation to continuous costate from the infinite number of
solutions.

The main study of this paper is to discretize the continuous-
time MPC problem by converting the open loop OCP into NLP
using the pseudospectral discretization. This unevenly spaced
discretization enables more efficient and accurate implementa-
tions of MPC over evenly spaced counterpart. This paper mainly
relies on the LGL collocation scheme, which makes possible to
directly apply initial solution as control input and add constraints
for terminal points in the predictive horizon [26]. The remainder
of this paper is organized as follows: Section 2 reviews the
continuous-time MPC problem. Then, its predictive horizon is
designed to be augmented by a mirrored horizon in Section 3. The
Legendre pseudospectral method is applied to discretize of the
augmented OCP in Section 4. Section 5 renews the known covector
mapping principle for the augmented problem; Illustrative
examples are given in Section 6. Section 7 concludes this paper.

2. Continuous-time MPC problem

Let us consider a class of nonlinear continuous-time systems
described by

_xðtÞ ¼ f x tð Þ;u tð Þð Þ ð1Þ
where xARn is the state vector, uARm is the control, f :ðRn;RmÞ
-Rn is the mapping function. Note that there exists a dual pair
x;uð ÞA ðX;UÞA ðRn;RmÞ which satisfies f x;uð Þ ¼ 0: The sets XARn

and UARm are admissible box constraints for the state and input.
For narrative convenience, the predictive horizon is assumed to
range from t ¼ �1 to t ¼ 0 for the sake of simplicity, where t ¼ �1
is the current time. The optimal control problem for the predictive
horizon (Problem A) is as follows.

min
u tð Þ;t∈ −1;0½ �

J ¼ φ x 0ð Þð Þþ∫ 0
−1L x tð Þ;u tð Þð Þdt ð2Þ

Subject to

h xðtÞ;uðtÞð Þr0;
x �1ð Þ ¼ x0;
φðx 0ð ÞÞr0;
x tð ÞAXARn;

u tð ÞAUARm:

ð3Þ

In Problem A, t ¼ �1 is the initial time and t ¼ 0 is the final
time, L :ðRn;RmÞ-R and ϕ:Rn-R are non-negative functions of
ðx;uÞ and xð0Þ, h:ðRn;RmÞ-Rq and φ:ðRn;RmÞ-Rl reflects the
constraint on the terminal state. The length of prediction horizon
is 1, over which the cost function is optimized. The problem is
solved numerically to obtain the optimal control trajectory
u� tð Þ; tA ½�1;0�, and the value of u� tð Þ at t ¼ �1 is used for the
current time step control.

3. Doubled horizon: augmented by mirrored horizon

In the model predictive control defined on the interval [�1, 1]
as shown in Fig. 1, only the first point (t¼�1) of optimized
sequence in the predictive horizon [�1, 0] is implemented as
control input. Thus the accuracy around �1 (beginning of pre-
dictive horizon) is more important than that around t¼0 (end of
predictive horizon). Meanwhile, a point deployment such as
“dense beginning and sparse end” is beneficial to enhance the
accuracy of MPC. Similar technique has been used in many MPC
applications, in which “move-blocking” is called [32,33]. The
move-blocking scheme has two mechanisms to reduce computing
complexity, of which one is to reduce the degrees of freedom by
fixing some controls to be constant, and the other is to use thicker
points in the beginning of predictive horizon and thinner points at
the end. In contrast, the standard pseudospectral framework has
the same point density at t¼�1 and t¼þ1, which is a less effi-
cient deployment of collocation points for MPC. In order to more
effectively use LGL, the predictive horizon is virtually augmented
by a mirrored horizon, which allows reducing the collocation
points into half. The length of the mirrored horizon is designed to
be identical to that of the predictive horizon. The states and inputs
in mirrored horizon are then assumed to be symmetric to those of
the predictive horizon, as illustrated in Fig. 1. The optimal control
problem over the entire (predictive and mirrored) horizon is called
an augmented problem, defined as Problem B. The mirrored
strategy is designed to use denser points around initial time (i.e.,
t¼�1) and sparser points around terminal time (i.e., t¼0), which
can ensure better accuracy around �1 with half-LGL collocation as
compared with full LGL collocation under identical number of
points. The mirrored strategy can generate similar efficiency-
enhancing effect to the move-blocking technique.
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