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a b s t r a c t

The recent years have witnessed a surge of interest in semi-supervised learning methods. Numerous
methods have been proposed for learning from partially labeled data. In this paper, a novel semi-
supervised learning approach based on statistical physics is proposed. We treat each data point as an
Ising spin and the interaction between pairwise spins is captured by the similarity between the pairwise
points. The labels of the data points are treated as the directions of the corresponding spins. In semi-
supervised setting, some of the spins have fixed directions (which corresponds to the labeled data), and
our task is to determine the directions of other spins. An approach based on the Mean Field theory is
proposed to achieve this goal. Finally the experimental results on both toy and real world data sets are
provided to show the effectiveness of our method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Traditional data mining approaches can be categorized into two
categories: (1) supervised learning, which aims to predict the labels
of any new data points from the observed data-label pairs. A
supervised learning task is called regression when the predicted
labels take real values, and classification when the predicted labels
take a set of discrete values. Typical supervised learning methods
include Support Vector Machine [32] and Decision Tree [25]; (2)
unsupervised learning, the goal of which is just to organize the
observed data points without labels. Typical unsupervised learn-
ing tasks include clustering [15] and dimensionality reduction [26].

In this paper, we will focus on classification, which is tradi-
tionally a supervised learning task. To train a classifier one needs a
collection of labeled data points. However, in many practical
applications of pattern classification and data mining, one often
faces a lack of sufficient labeled data, since labeling often requires
expensive human labor and much time. Meanwhile, in many cases,
large numbers of unlabeled data can be far easier to obtain. For
example, in text classification, one may have an easy access to a
large database of documents (e.g. by crawling the web), but only a
small part of them are classified by hand.

Consequently, semi-supervised learning methods, which aim to
learn from partially labeled data, are proposed. Many conventional
semi-supervised learning algorithms adopt a generative model for
the classifier and employ Expectation Maximization (EM) [10] to
model the label prediction or parameter estimation process. For
example, mixture of Gaussians [27], mixture of experts [20], and
naive Bayes [21] have been respectively used as the generative
model, while EM is used to combine labeled and unlabeled data
for classification. There are also many other algorithms such as co-
training [6], transductive SVM (TSVM) [14], and the Gaussian process
approach [18]. For a detailed literature survey one can refer to [36].

The basic assumption behind semi-supervised learning is the
cluster assumption [8], which states that two points are likely to
have the same class label if there is a path connecting them pas-
sing through the regions of high density only. Zhou et al. [34]
further explored the geometric intuition behind this assumption:
(1) nearby points are likely to have the same label; (2) points on
the same structure (such as a cluster or a submanifold) are likely to
have the same label. Note that the first assumption is local, while
the second one is global. The cluster assumption implies us to
consider both local and global information contained in the
dataset during learning.

In recent years there has been significant interest in adapting
numerical [22] and analytic [3] techniques from statistical physics
to provide beautiful algorithms and estimates for machine learn-
ing and neural computation problems. In this paper we formulate
the problem of semi-supervised learning as that of measuring
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equilibrium properties of an homogeneous Ising model. In our
model, each data point is viewed as a spin, the direction of the spin
stands for the label of the data point. We also introduce some
interactions between pairwise points based on the intrinsic geo-
metry of the dataset. The directions of the spins corresponding to
the labeled data points are fixed. And our goal is to predict the
labels of the unlabeled points, which will be estimated by the
directions of these spins in thermal equilibrium. The experiments
show that our method can give good classification results.

The rest of this paper is organized as follows. The detailed
description of the Ising model will be presented in Section 2. In
Section 3 we will introduce a Mean Field approach for solving the
Ising problems. Our approach for semi-supervised learning will be
described in Section 4, and we also compare it with traditional
Bayesian methods in Section 5. The experimental results on both
toy and real world datasets will be introduced in Section 6, fol-
lowed by the conclusions and discussions in Section 7.

2. Ising model

The Ising model [12] first proposed by E. Ising is a lattice model,
which is used for describing intermolecular forces. For example, in
magnets, each molecule has a spin that can be oriented either up
or down relative to the direction of an externally applied field.

Fig. 1 shows us such an example which is a 2D periodic lattice
having an array of 25 fixed points. Note that in real world appli-
cations the lattice can be of any type. With each lattice site is
associated a spin variable Si being either þ1 or �1. In magnets, we
usually call þ1 spin up and �1 spin down.

A configuration of the lattice is a particular set of values of all
spins, e.g. a configuration of the 5�5 regular lattice is illustrated
in Fig. 1. Clearly, for such a spin system there are totally 225 pos-
sible configurations.

We usually assign an energy to a specific configuration of an
Ising model, and assume that the molecules exert only short-range
forces on each other, i.e. the interaction energy depends only on
the configurations of neighboring spins of the lattice. Taking
spontaneous magnetization as an example, since the neighboring
spins tend to have the same direction, we can define that if the
two neighboring spins are in the same direction, the energy
between them is �U, if they are in different directions, the energy
is þU (U40 is a constant). Then the energy of the system shown
in Fig. 1 is �24U.

In addition, we also assume that the total energy of a config-
uration also includes a term θi for each spin, which can be viewed
as the effects of an external field. If it is a magnetic field that can
result in a þθ energy on the spins with þ1 states, and �θ energy
on �1 spins, then the total energy of the configuration shown in
Fig. 1 is �24Uþ3θ.

Based on the discussions above, we can define the energy of a
general Ising model in a given configuration S¼ ðS1; S2;…; SNÞ to be

~EðSÞ ¼ �
X
〈i;j〉

~J ijSiSj�
X
i

~θ iSi; ð1Þ

where SiAfþ1; �1g is the current value of the ith spin, 〈i; j〉
represents a neighboring spin pair, Jij is the symmetric interaction
energy of the pairwise spins i and j, ~θ i is the energy on spin i
brought by the external fields. The canonical partition function of
the system is defined as1

Z ¼
Z

dS1

Z
dS2⋯

Z
dSNe�β ~E ðSÞ; ð2Þ

where

β¼ ðkTÞ�1; ð3Þ
and k is the Boltzmann constant and T is the temperature. We
further define the energy function as

EðSÞ ¼ �
X
〈i;j〉

JijSiSj�
X
i

θiSi; ð4Þ

where

Jij ¼ β~J ij; θi ¼ β ~θi : ð5Þ
Then the probability distribution of the spin system is

PðSÞ ¼ 1
Z
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X
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Furthermore, by absorbing the constraint that Si can only take
binary values, we can rewrite PðSÞ as

PðSÞ ¼ ρðSÞ
Z
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where ρðSÞ ¼∏iρðSiÞ with

ρðSiÞ ¼
1
2
δðSi�1Þþ1

2
δðSiþ1Þ; ð8Þ

which states the prior knowledge that each spin has the equal
probabilities to be þ1 or �1, and δð�Þ is the Dirac Delta function.
Therefore the marginal probability of Si is

PðSiÞ ¼
Z

∏
ja i

dSj PðSÞ: ð9Þ

Our goal is to approximate the behavior of such an Ising type
interacting spin system in equilibrium. We will introduce an
adaptive TAP approach [22] in the next section to solve the
problem.

3. The mean field approach for Ising model

The main idea of the mean field theory is to focus on one spin
and assume that the most important contribution to the interac-
tions of such spin with its neighboring spins is determined by the
mean field due to its neighboring spins [24]. It originally aims to

Fig. 1. An example of the 2D Ising model.

1 Here we give a more general form of the partition function. In our Ising
model case, since each random variable can only have two integer values, we can
use the sum operator to replace the integral operator.
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