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a b s t r a c t

Let RðGÞ be the graph obtained from G by adding a new vertex corresponding to each edge of G and by
joining each new vertex to the end vertices of the corresponding edge. Let IðGÞ be the set of newly added
vertices. The R-vertex corona of G1 and G2, denoted by G1 � G2, is the graph obtained from vertex disjoint
RðG1Þ and jVðG1Þj copies of G2 by joining the ith vertex of VðG1Þ to every vertex in the ith copy of G2. The
R-edge corona of G1 and G2, denoted by G1⊖G2, is the graph obtained from vertex disjoint RðG1Þ and
j IðG1Þj copies of G2 by joining the ith vertex of IðG1Þ to every vertex in the ith copy of G2. Liu et al. gave
formulae for the Laplacian polynomial and Kirchhoff index of RTðGÞ in [19]. In this paper, we give the
Laplacian polynomials of G1 � G2 and G1⊖G2 for a regular graph G1 and an arbitrary graph G2; on the
other hand, we derive formulae and lower bounds of Kirchhoff index of these graphs and generalize the
existing results.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all graphs considered are simple and
undirected. Let G¼ ðV ðGÞ; EðGÞÞ be a graph with vertex set VðGÞ ¼
fv1; v2;…; vng and edge set EðGÞ ¼ fe1; e2;…; emg. The adjacency
matrix of G, denoted by A(G), is an n� n symmetric matrix such
that aij ¼ 1 if vertices vi and vj are adjacent and 0 otherwise. Let
di ¼ dGðviÞ be the degree of vertex vi in G and DðGÞ ¼ diagðd1; d2;…
; dnÞ be the diagonal matrix of vertex degrees. The Laplacian matrix
of G is defined as LðGÞ ¼DðGÞ�AðGÞ. Denoted by PG(x) and μGðxÞ the
adjacent characteristic polynomial detðxI�AðGÞÞ and the Laplacian
characteristic polynomial detðxI�LðGÞÞ of G, respectively. Since A
(G) and L(G) are all real symmetric matrices, their eigenvalues are
real numbers. So we can assume that λ1ðGÞZλ2ðGÞZ⋯ZλnðGÞ
(resp., 0¼ μ1ðGÞrμ2ðGÞr⋯rμnðGÞ)are the adjacency (resp.,
Laplacian) eigenvalues of G. The collection of the adjacency (resp.,
Laplacian) eigenvalues of G together with their multiplicities forms
the adjacency (resp., Laplacian) spectrum of G. For other undefined
notations and terminology from graph theory, the readers may

refer to [1] and the references therein. There are many applications
for Laplacian eigenvalues of graphs. For example, there are many
problems in physics and chemistry where the Laplacian eigenva-
lues play the central role. The Laplacian eigenvalues are in the
segmentation of the combination optimization, method of design,
parallel algorithm, solving linear systems, clustering and other
aspects of a wide range of applications. See [32,33].

In 1993, Klein and Randić [2] introduced a distance function
named resistance distance on the basis of electrical network the-
ory. They view a graph as an electrical network each edge of the
graph is assumed to be a unit resistor, then take the resistance
distance between vertices to be the effective resistance between
them. Let G be a simple graph with the vertex set VðGÞ ¼
fv1; v2;…; vng, and rij denote the effective resistance distance
between vertices vi and vj as computed with Ohm's law when all
the edges of G are considered to be unit resistors. The sum of
resistance distance Kf ðGÞ ¼Pio jrijðGÞ was proposed in [1], later
called the Kirchhoff index of G in [3]. In electric theory, it is of
interest to compute the effective resistance between any pair of
vertices of a network, as well as the Kirchhoff index. The Kirchhoff
index was introduced in chemistry as a better alternative to other
parameters used for discriminating different molecules with
similar shapes and structures. See [2]. The resistance distance and
the Kirchhoff index attracted extensive attention due to its wide
applications in physics, chemistry, etc. See [4–9]. For more
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information on resistance distance and Kirchhoff index of graphs,
the readers are referred to the papers [7–9].

In [10], new graph operations based on R(G) graphs: R-vertex
corona and R-edge corona, are introduced, and their A-spectrum
(resp., L-spectrum) are investigated. For a graph G, let R(G) be the
graph obtained from G by adding a new vertex ue and joining ue to
the end vertices of e for each eAEðGÞ. The graph R(G) appeared in
[11] and we call it the R-graph of G. Let I(G) be the set of newly
added vertices, i.e IðGÞ ¼ VðRðGÞÞ⧹VðGÞ.

Let G1 and G2 be two vertex-disjoint graphs.

Definition 1.1 (Lan and Zhou [10]). The R-vertex corona of G1 and
G2, denoted by G1 � G2, is the graph obtained from vertex disjoint
RðG1Þ and jVðG1Þj copies of G2 by joining the ith vertex of VðG1Þ to
every vertex in the ith copy of G2.

Definition 1.2 (Lan and Zhou [10]). The R-edge corona of G1 and
G2, denoted by G1⊖G2, is the graph obtained from vertex disjoint
RðG1Þ and j IðG1Þj copies of G2 by joining the ith vertex of j IðG1Þj to
every vertex in the ith copy of G2.

Note that if Gi has ni vertices and mi edges for i¼1,2, then G1 �
G2 has n1þm1þn1n2 vertices and 3m1þn1m2þn1n2 edges, G1⊖G2

has n1þm1þm1n2 vertices and 3m1þm1m2þm1n2 edges.
As the authors of [12] pointed out, it is an interesting problem

to compute Kirchhoff index of large composition graphs in terms
of parameters of small graph in the composition [13,14]. The
Kirchhoff index has been computed for some classes of graphs,
such as cycles [15], complete graph [15], distance transitive graphs
[16], and so on [5,8,15,17,20–25,31]. The Kirchhoff index of certain
composite operations between two graphs was studied as well,
such as product, lexicographic product [18] and join, corona,
cluster [12]. Then recently Liu et al. [19] explore the Laplacian
polynomial of RT(G) of a regular graph G. Motivated by these
results, in this paper we compute the Laplacian polynomial of G1

�G2 and G1⊖G2 for a regular graph G1 and an arbitrary graph G2

and derive formulae and low bounds of Kirchhoff index of these
graphs and generalize their results in [19].

2. Preliminaries

In this section, we determine the characteristic polynomials of
graphs with the help of the coronal of a matrix. The M�coronal
TMðλÞ of an n� n matrix M is defined [26,27] to be the sum of the
entries of the matrix ðλIn�MÞ�1, that is

TMðλÞ ¼ 1T
nðλIn�MÞ�11n;

where 1n denotes the column vector of dimension n with all the
entries equal one.

If M has a constant row sum t, it is easy to verify that

TMðλÞ ¼
n

λ�t
: ð1Þ

The Kronecker product A � B of two matrices A¼ ðaijÞm�n and
B¼ ðbijÞp�q is the mp� nq matrix obtained from A by replacing
each element aij by aijB. This is an associate operation with the
property that ðA � BÞT ¼ AT � BT and ðA � BÞðC � DÞ ¼ AC � BD
whenever the products AC and BD exist.

Lemma 2.1 (Zhang [28]). Let M1;M2;M3 and M4 be respectively p�
p; p� q; q� p and q� q matrices with M1 and M4 invertible, then

det
M1 M2

M3 M4

 !
¼ detðM4ÞdetðM1�M2M

�1
4 M3Þ

¼ detðM1ÞdetðM4�M3M
�1
4 M2Þ;

where M1�M2M
�1
4 M3 and M4�M3M

�1
1 M2 are called the Schur

complements of M4 and M1, respectively.

3. The Laplacian polynomial of R-vertex and R-edge corona

For a regular graph G1, the next theorems give the repre-
sentation of the Laplacian polynomial of G1 � G2 and G1⊖G2 by
means of the characteristic polynomial and the Laplacian poly-
nomial of G1 and G2.

Theorem 3.1. Let G1 be an r1-regular graph with n1 vertices and m1

edges and G2 be an arbitrary graph with n2 vertices. Then the
Laplacian characteristic polynomial of G1 � G2 is given by

(i)
μG1 �G2

ðxÞ ¼ ∏
n2

i ¼ 1
ðx�1�μiðG2ÞÞn1 ðx�2Þm1 ð3�xÞn1PG1

ðx�n2Þðx�2Þ
3� x þ r1ð2x�3Þ

x�3 þ n2ðx�2Þ
ðx�3Þðx�1Þ

� �
:

(ii)
μG1 �G2

ðxÞ ¼∏n2
i ¼ 1ðx�1�μiðG2ÞÞn1 ðx�2Þm1 ðx�3Þn1μG1

xðx2 �ð3þn2 þ r1Þxþð2n2 þ r1 þ2ÞÞ
ðx�1Þðx�3Þ

� �
.

Proof. (i) Let B be the vertex-edge incidence matrix of G1. Since G1

is an r1-regular graph, we have DðG1Þ ¼ r1In1 . By a pertinent
labeling of the vertices of G1 � G2, then the Laplacian matrix of
G1 � G2 can be written as

LðG1 � G2Þ ¼
2Im1 �BT 0m1�n1n2

�B ðr1þn2ÞIn1 þLðG1Þ � In1 � 1T
n2

0n1n2�m1 � In1 � 1n2 In1 � ðIn2 þLðG2ÞÞ

0
BB@

1
CCA;

where 0n denotes the length-n column vectors consisting entirely
of 00s.

It follows that

μG1 �G2
ðxÞ ¼ det

ðx�2ÞIm1 BT 0m1�n1n2

B ðx�r1�n2ÞIn1 �LðG1Þ In1 � 1T
n2

0n1n2�m1 In1 � 1n2 In1 � ððx�1ÞIn2 �LðG2ÞÞ

0
BB@

1
CCA

¼ ∏
n2

i ¼ 1
x�1�μiðG2Þ
� �n1 � detðSÞ; ð2Þ

where

S¼ ðx�2ÞIm1 BT

B ðx�r1�n2ÞIn1 �LðG1Þ

 !
�

0m1�n1n2

In1 � 1T
n2

 !
ðIn1

� ððx�1Þ In2 �LðG2ÞÞ�1 0n1n2�m1 In1 � 1n2

� �

¼ ðx�2ÞIm1 BT

B ðx�r1�n2ÞIn1 �LðG1Þ

 !

�
0m1�m1 0m1�n1

0n1�m1 In1 � 1T
n2
ðxIn2 �LðG2ÞÞ�11n2

 !

¼ ðx�2ÞIm1 BT

B ðx�r1�n2ÞIn1 �LðG1Þ

 !

�
0m1�m1 0m1�n1

0n1�m1 TLðG2ÞðxÞIn1

 !

¼ ðx�2ÞIm1 BT

B ðx�r1�n2�TLðG2ÞðxÞÞIn1 �LðG1Þ

 !
:

From ð1Þ, we have TLðG2Þðx�1Þ ¼ n2
x�1 as each row sum of LðG2Þ is

equal to 0. It is well known that BBT ¼ AðG1Þþr1In1 . Consequently,

detðSÞ ¼ detððx�2ÞIm1 Þdet x�r1�n2�
n2

x�1

� �
In1 �LðG1Þ�

1
x�2

BBT
� �

¼ ðx�2Þm1det x�2r1�n2�
n2

x�1
� r1
x�2

� �
In1 þ 1� 1

x�2

� �
AðG1Þ

� �

¼ ðx�2Þm1 ð3�xÞn1det
ðx�n2Þðx�2Þ

3�x
þr1ð2x�3Þ

x�3
þ n2ðx�2Þ
ðx�3Þðx�1Þ

� �
In1

�
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