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a b s t r a c t

With the rapid accumulation of high dimensional data, dimensionality reduction plays a more and more
important role in practical data processing and learning tasks. This paper studies semi-supervised
dimensionality reduction using pairwise constraints. In this setting, domain knowledge is given in the
form of pairwise constraints, which specifies whether a pair of instances belong to the same class (must-
link constraint) or different classes (cannot-link constraint). In this paper, a novel semi-supervised
dimensionality reduction method called Adaptive Semi-Supervised Dimensionality Reduction with
Sparse Representation (ASSDR-SR) is proposed, which can get the optimized low dimensional repre-
sentation of the original data by adaptively adjusting the weights of the pairwise constraints and
simultaneously optimizing the graph construction using the ℓ1 graph of sparse representation. Experi-
ments on clustering and classification tasks show that ASSDR-SR is superior to some existing dimen-
sionality reduction methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The goal of dimensionality reduction is to reduce the com-
plexity of the input data while some desired intrinsic information
of the data is preserved. Two of the most popular methods for
dimensionality reduction are Principal Component Analysis (PCA)
[1] and Linear Discriminant Analysis (LDA) [2], which are unsu-
pervised and supervised respectively.

In many real world applications such as image segmentation,
web page classification and gene-expression clustering, a labeling
process is costly and time-consuming; in contrast, unlabeled
examples can be easily obtained. Therefore, in such situations,
it may be beneficial to incorporate the information which is
contained in unlabeled examples into a learning problem, i.e.,
Semi-Supervised Learning (SSL) [3] should be applied instead
of supervised learning. Meanwhile, dimensionality reduction in
semi-supervised situation has also attracted more and more
attention [4,5].

However, in many cases, people cannot tell which category an
instance belongs to, that is we do not know the exact label of an
instance, and what we know is the constraint information of
whether a pair of instances belong to the same class (must-link
constraint) or different classes (cannot-link constraint) [6]. The
above pairwise constraint information is called “Side Information”

[7]. It can be seen that constraint information is more general than
label information, because we can get constraint information from
label information but it cannot work contrariwise [8].

Some related works have been proposed to make use of the
pairwise constraints to extract low dimensional structure in high
dimensional data. Bar-Hillel et al. proposed Relevant Component
Analysis (RCA) which can make use of the must-link constraints
for semi-supervised dimensionality reduction [9]. Xing et al. [7],
Tang et al. [10], Yeung et al. [11] and An et al. [12] proposed some
constraints based semi-supervised dimensionality reduction
methods, which can make use of both the must-link constraints
and cannot-link constraints. Zhang et al. proposed Semi-
Supervised Dimensionality Reduction (SSDR) [13] and Chen et al.
used SSDR in hyperspectral image classification [14]. SSDR can use
the pairwise constraints as well as preserve the global covariance
structure of the unlabeled data in the projected low dimensional
subspace. Cevikalp et al. proposed Constrained Locality Preserving
Projections (CLPP) [15] which is the semi-supervised version of
LPP [16]. The method can make use of the information provided by
the pairwise constraints and can also use the unlabelled data by
preserving the local structure used in LPP. Wei et al. proposed
Neighborhood Preserving based Semi-Supervised Dimensionality
Reduction (NPSSDR) [17] by using the pairwise constraints and
preserving the neighborhood structure used in LLE [18]. Baghshah
et al. used the idea of NPSSDR in metric learning and used a
heuristic search algorithm to solve the proposed constrained trace
ratio problem [19]. Davidson proposed a graph driven constrained
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dimensionality reduction approach GCDR-LP for clustering [20]. In
this approach, a constraint graph is firstly created by propagate the
constraints due to transitivity and entailment in the graph, and
then the dimensionality reduction can be conducted by the con-
straint graph. Related works also include Dual Subspace Projec-
tions (DSP) [21], integrating Local and Global topological Structure
for SSDR (LGS3DR) [22] et al.

However, a common problem of the aforementioned methods
is that the pairwise constraints are equally treated in the algo-
rithms which ignore the fact of unequally informativeness owned
by different pairwise constraints. For example, consider a binary-
class case in Fig. 1, (a, b) and (c, d) are two must-link constraints of
class 1, (e, f) and (g, h) are two cannot-link constraints between
class 1 and class 2. It is sound to say that the must-link constraint
(c, d) has more information than (a, b), because the distance of (c,
d) is larger than that of (a, b), which indicates c and d are more
likely to be located on the margin of class 1. On the contrary, the
cannot-link constraint (e, f) has more information than (g, h),
because the distance of (e, f) is smaller than that of (g, h), which
indicates e and f are more likely to be located on the margin
between class 1 and class 2. So, it is sensible to handle different
pairwise constraints with different importances.

On the other hand, in order to utilize unlabeled data, most
graph-based semi-supervised dimensionality reduction methods
(e.g., CLPP and NPSSDR) generally construct a neighborhood graph
from the available data. Conventional graph construction pro-
cesses are generally divided into two independent steps, i.e.,
adjacency searching and weight computing. However, such graph
tends to work poorly due to the high dimensions of the original
space because it is hard to search the appropriate adjacencies of a
given datum and compute the weights between them in the high
dimensional space. To solve the problem, one should integrate
graph construction with specific semi-supervised dimensionality
reduction process into a unified framework, which results in an
optimized graph rather than a predefined one. Recently, Nie et al.
[23] proposed a clustering model to learn the data similarity

matrix and clustering structure simultaneously which is similar to
our idea. Related works also include [24,25].

In this paper, a novel semi-supervised dimensionality reduction
method called Adaptive Semi-Supervised Dimensionality Reduc-
tion with Sparse Representation (ASSDR-SR) is proposed. ASSDR-
SR first initializes all the pairwise constraints with equal weights
and construct the adjacency weight matrix using the ℓ1 graph of
the sparse representation [26–28], and then the following proce-
dure is repeated until the stop condition is satisfied: (1) reducing
the dimensionality of the original space with the current weighted
pairwise constraints and the current adjacency weight matrix;
(2) optimizing the ℓ1 graph of the sparse representation as the
adjacency weight matrix in the reduced subspace with the current
weighted pairwise constraints; (3) clustering in the reduced sub-
space and updating the weights of the pairwise constraints
according to the clustering result. As a result, we can get the
optimized weights for the pairwise constraints and the optimized
adjacency weight matrix for the neighborhood graph, as well as
the projection matrix.

2. Objective function of ASSDR-SR

2.1. The problem

Here we define the weighted pairwise constraints based semi-
supervised dimensionality reduction problem as follows: Suppose
we have a set of D-dimensional data samples fcxigni ¼ 1, where
xiARD, together with some pairwise must-link constraints (M) and
cannot-link constraints (C) as domain knowledge: ðxi; xjÞAM, if xi
and xj are in the same class; ðxi; xjÞAC, if xi and xj are in the dif-
ferent classes. In addition, we suppose each pairwise constraint
ðxi; xjÞ has a pending weight Sij (Sijo0 for must-link constraints;
Sij40 for cannot-link constraints. For consistency, we set Sij ¼ 0
for unconstrained pairs) to indicate the informativeness owned by
itself, which means one should be paid more attention to the
pairwise constraint ðxi; xjÞ if jSij j is large. In this case, what we
want to do is to find a set of linear projection vectors
W ¼ ½w1;w2;…;wd�ARD�d, where d⪡D, such that the transformed
low dimensional projections fyigni ¼ 1 � Rd, where yi ¼WTxi, can
preserve some properties of the original dataset as well as the
pairwise constraints in M and C.

2.2. Making use of pairwise constraints

To make use of the pairwise constraints to control the simi-
larity of pairwise instances, those in M should end up close to each
other while the pairwise points in C should end up far from each
other. This means the instances belong to the same class in the
original space should be close to each other in the reduced sub-
space, and the instances belong to different classes in the original
space should be far from each other in the reduced subspace. In
addition, if Sij is negative and jSij j is large, it means ðxi; xjÞAM and
they should be closer to each other than with smaller jSij j in the
reduced subspace; if Sij is positive and jSij j is large, it means ðxi;
xjÞAC and they should be farther from each other than with
smaller j Sij j in the reduced subspace.

As for the weighted must-link constraints M, the intraclass
compactness is characterized by the term as follows:

QMðW ; SÞ ¼
X

ðxi ;xjÞAM or ðxj ;xiÞAM

JWTxi�WTxj J22 jSij j ð1Þ

QMðW ; SÞ should be as small as possible which means the
weighted distance sum in the transformed low dimensional sub-
space between instances involved in the must-link constraints M
should be small.

Fig. 1. Illustration of pairwise constraints with different amounts of information.
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