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a b s t r a c t

Financial distress prediction (FDP) is of great importance for managers, creditors and investors to take
correct measures so as to reduce loss. Many quantitative methods have been proposed to develop
empirical models for FDP recently. In this paper, a nonlinear subspace multiple kernel learning (MKL)
method is proposed for the task of FDP. A key point is how basis kernels could be well explored for
measuring similarity between samples while a MKL strategy is used for FDP. In the proposed MKL
method, a divide-and-conquer strategy is adopted to learn the weights of the basis kernels and the
optimal predictor for FDP, respectively. The optimal weights of the basis kernels in linear combination is
derived through solving a nonlinear form of maximum eigenvalue problem instead of solving compli-
cated multiple-kernel optimization. Support vector machine (SVM) is then used to generate an optimal
predictor with the optimally linearly-combined kernel. In experiments, the proposed method is com-
pared with other FDP methods on Normal and ST Chinese listed companies during the period of 2006–
2013, in order to demonstrate the prediction performance. The performance of the proposed method is
superior to the state-of-the-art predictor compared in the experiments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

As the world's second largest economy, Chinese economic
development has brought a great power to the global economic
recovery, but the enterprise management mechanism remains
backward state, including listed companies’ financial distress
study. Accurate judgment before arising the company financial
distress will benefit to reduce property loss form of country and
companies' themselves. The companies can take some effective
measure to stop this situation spend and bring it back on track.
Financial distress prediction (FDP) is using some useful methods to
catch this situation, analyzing the report data from enterprises
before distress arising [1–3].

In the early stages, some methods were developed for FDP, such
as univariate analysis [1], multiple discriminant analysis (MDA)
[2], logistic regression algorithm (Logit) [1]. With the development
of some artificial intelligence methods, these methods are also
used in FDP, like neural networks (NNs) [4,5], support vector
machine (SVM) [5–7]. In recent years, some combinations of
multiple classifiers are also present to solve the limited explana-
tory ability problem in single classifiers, such as Bagging method

and Adaboost method [9]. Most of researches focus on the model
learning for FDP but ignore the importance of financial ratios
selection. Although there have already exist some state-of-the-art
feature selection method which can be used for ratio selection, like
Principal Component Analysis (PCA) [10], Linear Discriminate
Analysis (LDA) [11], Kernel-PCA [12] and Kernel-LDA [13], those
feature selection are not suitable for FDP and not have a sufficient
interpretability. Recently, SVM method has present excellent
nonlinear generalization ability to high dimension and small
sample evaluation problem and can get upper prediction accuracy
using kernel method. SVM has been recently applied for FDP task
and demonstrated good performance [7,8]. The conventional SVM
only use single kernel like Gaussian kernel with fixed parameters
to measure similarity of samples from same class or different
classes.

In recent years, the limitation of SVM with single kernel has
been recognized gradually. The limitation of single kernel learning
motivates researchers to develop new kind of kernel learning
methods, called multiple kernel learning (MKL). The Multiple
Kernel Learning (MKL) methods based on SVM framework can get
a better perform, using a composite kernel effectively to increase
the adaptive capacity [14–18]. Essentially, multiple basis kernels
with different forms or same forms but different parameters
provide more enhanced ability to measure sample similarity.
Integrating the basis kernels will results in better generalization
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capability and better classification performance. In our previous
work, a two-step multiple kernel regression (MKR) was proposed
for macroeconomic data forecasting of China [19]. Those existing
MKL algorithms demonstrate better performance than the con-
ventional SVM for forecasting and FDP. However, better utilizing
the potential of basis kernels for measuring sample similarity is
still an open topic.

In this paper, a nonlinear subspace multiple kernel learning
(MKL) method is proposed for the task of FDP. In the proposed
MKL method, a divide-and-conquer strategy is adopted to sepa-
rately learn the weights of the basis kernels and the optimal
predictor for FDP. The optimal weights of basis kernels in linear
combination is derived through solving a nonlinear form of max-
imum eigenvalue problem instead of solving complicated
multiple-kernel optimization. Support vector machine (SVM) is
then used to form an optimal predictor with the optimally
linearly-combined kernel. The main contribution of this paper can
be summarized as follow. In the existing MKL algorithms, two
main ways to learn a linear combination of the basis kernels. One
is to directly solve a complicated optimization problem which
simultaneously optimizes the weights and the final classification
results. The other one adopts linear subspace methods to learn the
optimally linear combination of the basis kernels. Compared to the
existing state-of-the-art, the main contribution of this work is to
adopt more effectively nonlinear subspace methods to get a
combined kernel which has excellent ability to learn samples.

The rest of the paper is divided into five sections. Section 2
briefly describes the kernel learning and MKL. Section 3 represents
the proposed MKL method and its' flowchart for task of FDP.
Section 4 gives a detailed description of the test data, i.e. the
Chinese listed companies' ratios data and analysis of the experi-
mental result. The last section provides conclusion.

2. The proposed MKL method

In the proposed MKL method, the basis kernels are firstly
generated by means of Gaussian kernels with different bandwidth
parameters. The optimal weights of the basis kernels in linear
combination form are learned via subspace learning manner. In
other words, searching the optimal weights is converted into a
subspace learning problem. In order to solve the subspace learning
problem, an eigenvalue decomposition method is performed on
basis kernels in Reproduced Kernel Hilbert Space (RKHS). The
eigenvector which responds to the maximum eigenvalue is just
the optimal weights of the basis kernels.

2.1. Conventional MKL

Given a set of training data set xi; yi
� �N

i ¼ 1, for binary classifi-
cation, yA þ1; �1f g. As we know, the dual optimization of the
conventional SVM can be written as the following form
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where αi and αj are Lagrange multipliers, and if αi is nonzero, the
corresponding xi is called support vector which determines the
decision hyperplane.

In Eq. (1), K is the kernel matrix which can be denoted by
Kð Þi;j ¼ k xi; xj

� �
. In aspect of forms of kernel mapping, Gaussian

radial basis function (RBF) kernel which is widely used in various
tasks of signal processing and pattern recognitions, is considered
in this paper. The Gaussian kernel function is given below

k x; zð Þ ¼ exp �‖x�z‖2

2σ2

� �
ð2Þ

Here, the Gaussian kernel is used as the kernel function. The
Gaussian kernel is the most representative kernel with some
merits such as translation invariability. In the proposed MKL
method, the Gaussian kernels with different bandwidths are fixed
as the predefined basis kernels. As far as MKL is concerned, K can
be substitute by convex linear combination of predefined basis
kernels with different kernel forms or different kernel parameters.
The linear combination of the basis kernels can be expressed as
follows

K ¼
XM
m ¼ 1

dmKm ð3Þ

where Kmf gMm ¼ 1 is a set of the positive semidefinite (PSD)

basis kernel matrices with bounded trace and
�
dm dm

		 Z0;
PM

m ¼ 1

dm ¼ 1

M

m ¼ 1
are the corresponding weights.

By integrating Eq. (3) into Eq. (1), the dual problem of MKL
under the optimization routine of SVM can be represented as
follows
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By means of the optimization routine of the conventional SVM,
MKL refers to achieve the simultaneous optimization of the kernel
combination and learning performance.

2.2. Subspace learning in MKL

Given the Gram matrices of M basis kernels K0 ¼ Km;m¼f
1;2;⋯;M;KmAℝN�Ng. We can reformulate Eq. (3) as follows

K ¼ dTK ð5Þ

where dZ0;
PM
i ¼ 1

di ¼ 1 and K¼ K1K2⋯KM½ �T .
It is easy to find that the Eq. (5) is a typical form of subspace

projection. Now we build a loss function as follows

L U; Zð Þ ¼ ‖K�UZ‖2F ð6Þ
where U is the projection matrix whose columns, Z is the pro-
jected matrix in the linear subspace spanned by U, and ‖U‖F
denotes Frobenius norm of matrix.

According to projection theorem, minimizing the loss function
L U; Zð Þ is only determined by Z ¼ UTK. Furthermore, minimizing
the problem for L U; Zð Þ can be converted to the following dual
problem under a rank-one constraint

argmax
U

UTΣU
��� ���

F
¼ argmax

U
UTK

��� ���
F
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