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a b s t r a c t

This paper investigates a distributed optimization problem associated a time-varying multi-agent net-
work with the presence of delays, where each agent has local access to its convex objective function, and
cooperatively minimizes a sum of convex objective functions of the agents over the network. Based on
the mirror descent method, we develop a distributed algorithm to solve this problem by exploring the
delayed gradient information. Furthermore, we analyze the effects of delayed gradients on the con-
vergence of the algorithm and provide an explicit bound on the convergence rate as a function of the
delay parameter, the network size and topology. Our results show that the delays are asymptotically
negligible for smooth problems. The proposed algorithm can be viewed as a generalization of the dis-
tributed gradient-based projection methods since it utilizes a customized Bregman divergence instead of
the usual Euclidean squared distance. Finally, some simulation results on a logistic regression problem
are presented to demonstrate the effectiveness of the algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Distributed optimization over a multi-agent network has
attracted considerable recent interest in many applications. This is
mainly motivated by the emergence of large-scale networks such
as Internet networks, mobile ad hoc networks and wireless sensor
networks, characterized by the lack of centralized access to
information and time-varying connectivity. Therefore, optimiza-
tion algorithms embedded in the underling multi-agent network
should be completely distributed with local agent communica-
tions and adaptive to the changes in the network topology. Start-
ing with the pioneering work [1–3], there has been extensively
studies on solving optimization problems in a distributed manner
[4–6]. For more details, we can also refer to the recent book [7]
and references therein. Recently, by utilizing the idea of consensus
averaging over a network [8,9], many researchers have investi-
gated various multi-agent optimization problems arising in the

engineering community [10–17]. In [18], Li et al. designed a novel
observer-based adaptive sliding mode control approach of non-
linear Markovian jump systems with partly unknown transition
probabilities and improved the performance of the considered
systems. In [19,20], Zhou et al. developed decentralized adaptive
control schemes for robot finger dynamics and MIMO nonlinear
systems with input saturation. In [21–23], the authors proposed
consensus control methods based on event-triggering strategy
over multi-agent network systems.

In the literature several useful algorithms have been developed
for the distributed optimization. Of particular interest is the dis-
tributed gradient-based projection (DGP) methods, see, e.g., [24–
28]. Based on the consensus strategy, Nedić et al. [6] originally
proposed a distributed (sub)gradient method that involves every
agent minimizing its own objective while exchanging information
locally with other agents over a network. Their contribution is that
the explicit error bounds on the convergence rate of the algorithm
have been established. However, there only unconstrained opti-
mization is considered. Later, the authors in [24] extended the
results of [6] to a constrained case, where the estimates of each
agent are restricted to lie in different constrained sets. Duchi et al.
in [29] studied a constrained distributed optimization based on
dual (sub)gradient averaging [8]. The contribution of that paper is
to show that the number of iterations required by their proposed
algorithm scales inversely in the spectral gap of the network. In
[30,31], the authors developed distributed primal-dual (sub)gra-
dient methods for solving a class of distributed problems with
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equality or inequality constraints, by characterizing the primal and
dual optimal solutions as the saddle points of the Lagrangian of
the problem under consideration.

Due to requiring only the calculation of (sub)gradients and
projections, the DGP methods have been widely used in large-
scale distributed optimization [5]. However, it is sometimes chal-
lenging for DGP methods to generate projections for certain
objective functions and constraint sets yielding inefficient updates
[32]. One of typical examples is the entropy-based loss function
with the constraint set being the unit simplex. To overcome the
difficulty, Xi et. al [33] recently proposed a novel distributed
algorithm depending on the mirror descent method [34], which
employs the Bregman distance instead of the Euclidean squared
distance. Compared with DGP methods, the primary advantage of
their proposed algorithm can efficiently deal with certain non-
Euclidean projections and improve the performance in high
dimensions.

The distributed algorithms presented in earlier works
[24,29,30,33] assume that at any time, each agent has access to
estimate the states of its immediate neighbors. As pointed out in
[7], this may be impossible in communication networks where
delays exist in the transmission of agent estimates over a com-
munication channel. A natural extension is to study an asynchro-
nous operation of optimization algorithms in the presence of
delays. In [35–37], the authors generalized the DGP methods or
the distributed dual averaging (sub)gradient methods to handle
distributed optimization over a network with communication
delays or quantized communication. In addition, the convergence
rates of distributed algorithms based on delayed gradient infor-
mation were analyzed in [38,39]. Recently, various types of delays
over networks have been extensively investigated by many
researchers, for examples, [40–46].

As it is well-known, establishing the rate properties of dis-
tributed algorithms in multi-agent systems is essential in under-
standing the robustness of the system against dynamic changes.
However, the convergence analysis of the algorithms is more
challenging due to delays. In this paper we will extend the dis-
tributed mirror descent (DMD) method to handle with the setting,
where communication delays over a time-varying multi-agent
network are considered.

The work in this paper is closely related to the previous works
[24,33,39]. Our algorithm is based on the initial discovery [33], but
we consider the presence of communication delays in the DMD
method and investigate the effect of delays on the convergence
properties of the algorithm. Therefore, the proposed algorithm in
this paper can be viewed as a generalization of the DMD algo-
rithm. In particular, we also extend the DGP methods [24,25] to
the case with communication delays, since the Euclidean projec-
tion in the DGP methods is replaced by the more general Bregman
projection. Also related is the delayed distributed dual averaging
(DDDA) algorithm presented in [39] by extending the distributed
dual averaging algorithm to the case, where only the delayed
gradient information is available over the network. However, our
algorithm essentially differs from the algorithm described in [39],
where the proximal projection generating from a proximal func-
tion is used in the DDDA algorithm rather than the Bregman
projection generating from a Bregman divergence function in our
algorithm, although both algorithms take into gradient delays
consideration for solving distributed optimization. In addition, the
difference lies in that the DDDA algorithm makes a global
approximation while our algorithm only makes a local
approximation.

There are two main contributions in this paper. The first con-
tribution is the extension of the distributed mirror descent algo-
rithm to the delayed case, where the procedure receives out-of-
date gradients instead of current gradients. The second main

contribution is a careful analysis that demonstrates the effects of
delays on the convergence rate of the proposed algorithm. We
prove that the algorithm can asymptotically converge to the
optimal solution as the iteration approaches infinity in spite of
delays. Our results show that for smooth optimization problems,
the delay is asymptotically negligible. In other words, the algo-
rithm preserves the performance benefits despite using the stale
gradient information available. We provide a provable guarantee
that the explicit error bounds between the objective values of the
estimates at each agent and the optimal value of the problem can
quickly achieve a preset accuracy, when the stepsize is properly
chosen.

Notations: The inner product of two vectors x and y is 〈x; y〉, and
the standard Euclidean norm is defined by JxJ≔〈x; y〉1=2. The dual
norm J � Jn to the Euclidean norm J � J is defined by
JzJn≔sup J x J r1〈z; x〉. Let ½A�ij represent the (i,j)th element of a
matrix A. For two matrices A and B, we use A�B≽0 to represent
the matrix A�B is positive semi-definite. For any ϵA ½0;1�, we say
that a quantity u is of order OðvðϵÞÞ if there exists a constant c40
such that urcvðϵÞ.

2. Problem and algorithm

2.1. Problem formulation

Consider a time-varying network of m agents, indexed by
i¼ 1;…;m. The communication topology is modeled by a directed
graph Gt ¼ ðV; EtÞ over the vertex set V with edge set Et � V � V,
where V ¼ f1;…;mg. Let N iðtÞ represent the collection of in-
neighbors, i.e., the set of agents that can send information to agent
i at time t. The network objective is to solve the following con-
strained optimization problem:

min f ðxÞ ≔ 1
m

Xm
i ¼ 1

f iðxÞ s:t: xAX ≔ ⋂
m

i ¼ 1
Xi; ð1Þ

where f i : R
d-R is a local objective function at agent i, only

known by agent i, and Xi �Rd is a local constraint at agent i. The
intersection, X, of the constraint sets is assumed to be nonempty.
For the simplicity of notation, we define f n ¼minxAXf ðxÞ,
Xn ¼ fxAX j f ðxÞ ¼ f ng.

Our goal in this paper is to deal with the situation, in which
each agent has only access to its private cost function fi, iAV and
can communicate the information with its immediate neighbors.

2.2. Definitions and assumptions

In our algorithm, we make use of the following definitions.

Definition 1 (Bertsekas and Tsitsiklis [2]). A differentiable function
μ : Rd-R is c-strongly convex, if there exists a constant c40 such
that for all x; yARd,

μðxÞZμðyÞþ 〈∇μðyÞ; x�y〉þ c
2
Jx�yJ2;

where ∇ is the gradient.

Definition 2 (Bregman [47]). For a given strongly convex differ-
entiable function μ : Rd-R, the Bregman divergence Dμðx; yÞ : Rd

�Rd-R between x and y based on a distance generating function
μ is defined as follows:

Dμðx; yÞ ¼ μðxÞ�μðyÞ� 〈∇μðyÞ; x�y〉:

By Definitions 1 and 2, the Bregman divergence satisfies
Dμðx; yÞZðc=2ÞJx�yJ2. The Bregman divergence can be viewed as
a natural generalization of the classical Euclidean squared
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