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a b s t r a c t

Recently, hashing has been widely applied to large scale image retrieval applications due to its appealing
query speed and low storage cost. The key idea of hashing is to learn a hash function that maps high
dimensional data into compact binary codes while preserving the similarity structure in the original
feature space. In this paper, we propose a new method called the Kernelized Sparse Hashing, which
generates sparse hash codes with ℓ1 and non-negative regularizations. Compared to traditional hashing
methods, our method only activates a small number of relevant bits on the hash code and hence
provides a more compact and interpretable representation of data. Moreover, the kernel trick is
introduced to capture the nonlinear similarity of features, and the local geometrical structure of data
is explicitly considered in our method to improve the retrieval accuracy. Extensive experiments on three
large-scale image datasets demonstrate the superior performance of our proposed method over the
examined state-of-the-art techniques.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the explosive growth of online images and videos, much
effort has been devoted to developing the data-dependent hashing
methods that aim to learn the similarity-preserving compact
binary codes for representing high-dimensional visual contents
[1–11]. This type of hashing technique features two common
traits: the encoded data are compact enough to be loaded into
the main memory, and the computation of Hamming distance can
be efficiently conducted using the bit XOR operation in CPU. As a
result, it is very fast to perform approximate similarity computa-
tion over such binary codes, which can significantly scale up the
nearest neighbor search to large-scale image collections.

One common paradigm of the aforementioned hashing methods is
to map the input data into a low-dimensional space by some kinds of
embedding techniques, e.g. principal component analysis (PCA), and
then binarize them into hash codes. As a result, there are two feasible
paths to further boost the performance of learning-based hashing
methods: one is to introduce a more advanced dimension reduction
technique to obtain the more informative embedded representation of
the data [1,3,5,8]. The other is to develop smarter quantization
schemes for transforming embedded representations into binary
codes [9,12–14]. In this paper, we choose to go down the former path
and propose a Kernelized Sparse Hashing (KSpH) method, inspired by
recent advances in sparse dictionary learning [6,8,15] that bring more

flexibility to adapt embedded representations to the data than
principal components.

Fig. 1 shows the main process of dictionary learning, code
generation and binarization in our framework. Our proposed KSpH
method learns the hash codes that minimize the reconstruction
error on the pre-trained dictionary. For each data point, our KSpH
has the power to activate the most relevant bits to 1 and others to
0 by imposing the sparsity and non-negative constraints on the
reconstruction coefficients. This characteristic enables all hashing
bits to be fully utilized since each hashing bit only needs to be
effective for certain data points. Furthermore, the generated sparse
and non-negative coefficients can be naturally mapped into binary
codes without losing too much information. At last, our method is
also inspired by previous works [3,7,16,17], and capable of exploit-
ing non-linear kernel function to measure similarity of features
and explicitly preserving the local geometrical structure of data,
which lead to yielding better hash codes for image retrieval.

The main contributions of this paper are as follows:

� By generating the sparse hash codes with both ℓ1 and non-
negative regularizations, only a small number of relevant
hashing bits are activated, which provides a more compact
and interpretable representation of data.

� The kernel trick is introduced to capture the nonlinear similarity
of features, which makes our method more adaptable to
different data distributions and non-linear similarity metrics.

� The local geometrical structure of data is explicitly utilized
when learning the dictionary, which further improves the
performance of nearest-neighbor retrieval.
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� We conduct experiments on NUS-WIDE, ANN-GIST and CIFAR
dataset which consist of 270,000, 1 million, and 60,000 images,
respectively. The experimental results show that the proposed
method outperforms the tested state-of-the-art techniques.

The remainder of this paper is organized as follows: Section 2
briefly introduces the related work on hashing methods for
scalable image retrieval. Section 3 presents the formal formulation
of our proposed KSpH framework. Section 4 shows the details of
the alternating optimization algorithm for learning the dictionary
and sparse coefficients. Section 5 provides the experiment setup
and results. Finally, we draw our conclusions in Section 6.

2. Related work

Faster nearest neighbor search technologies with sub-linear or
even constant time complexity are highly desirable for scalable
image retrieval and processing applications [1,7,9,10,18,19]. A
promising way to expedite nearest neighbor search is to hash
the high dimensional data into compact binary codes under the
condition of similar data points being mapped into similar code-
words within a small Hamming distance. Locality Sensitive Hash-
ing (LSH) [20] is a representative hashing method that uses simple
random projections as hash functions. By selecting the hash
functions that satisfy the locality sensitive property, similar data
will have a high probability to be mapped into the same hash code
in LSH. In [2], KLSH is proposed to generalize LSH with kernel
functions which makes LSH more flexible in the setting that the
embedded feature space is unknown or incomputable. However, a
common weakness of LSH and its extensions is that a large
number of hash tables are needed to attain a good search
performance due to the randomness of hash functions.

To better exploit the data distribution, a plenty of data-aware
hashing methods have been proposed by means of machine
learning technologies. In [4], stacked Restricted Boltzmann
Machines (RBMs) are utilized to capture the data distribution
and generate compact binary codes to represent the data points.
Spectral Hashing (SH) [1] uses a separable Laplacian eigenfunction
formulation that ends up assigning more bits to higher-variance
PCA directions. Binary reconstruction embedding (BRE) [3] learns
the hash function by explicitly minimizing the reconstruction
error between the original distances and the Hamming distances
of the corresponding binary codes. In [17], Self-Taught Hashing
(STH) is proposed to preserve the local similarity of data and learn
the hash function in a self-taught manner. Spline Regression
Hashing (SRH) [7] simultaneously considers the local and global
similarities of data by combining the local spline functions and the
global kernel hashing function.

After obtaining the embedded representations, smart quantiza-
tion schemes [9,12–14] are able to further improve the quality of
final compact binary codes. In iterative quantization [9], learning a
good binary code is formulated as the problem of directly

minimizing the quantization error of mapping the PCA-projected
data to vertices of the binary hypercube. In [12], Manhattan
hashing (MH) is proposed to solve the problem of Hamming
distance based hashing. The basic idea of MH is to encode each
projected dimension with multiple bits of natural binary code
(NBC). In [13,14], adaptive multi-bit quantization methods are
proposed to quantize each projected dimension with variable bit
numbers. More bits will be adaptively allocated to encode dimen-
sions with larger dispersion while fewer bits for dimensions with
smaller dispersion.

Modeling data vectors as sparse linear combinations of basis
elements [6,8,10,11,15] is widely used in machine learning, signal
processing and so forth. Dictionary Learning [15] is focused on
learning the basis set to adapt it to specific data. The novel data
will be represented with a sparse linear combination of a few
atoms in the learned dictionary. Robust Sparse Hashing (RSH) [8]
thinks that the input vectors themselves are perturbed or uncer-
tain, and learns dictionaries on the robustified counterparts of
uncertain data points. The difference between RSH and our
method is that RSH models data uncertainty from a robust
optimization perspective, however, our method exploits the local
geometrical structure of data and the kernel trick to model
complex data distributions.

3. The proposed framework

Given a collection of d-dimensional n data points X ¼ ½x1; x2;
…; xn�ARd�n, hashing aims to learn a hash function that maps these
data points into l-dimensional binary codes Y ¼ ½y1; y2;…; yn�A
0;1l�n. Here, d is the dimensionality of the original feature space
and l is the length of the obtained hash codes.

As mentioned above, we expect each hash code yi to be the
sparse representation of its corresponding data point xi under the
given dictionary bases D¼ ½d1; d2;…dl�ARd�l, while minimizing
the reconstruction error. Inspired by the sparse coding and
dictionary learning models [6,15], we write our objective function
as follows:

argmin
fyigni ¼ 1 ;D

:
Xn
i ¼ 1

Jxi�Dyi J
2
2þλJyi J1

� �
s:t: : yiA0;1l; i¼ 1;…;n

Jdj J22rc; j¼ 1;…; l ð1Þ

The constraint on yi enforces the learned hash codes to be binary
and the constraint Jdj J22rc removes the scaling ambiguity.

However, the objective function in Eq. (1) can be demonstrated
to be NP hard. Following [1,7], we remove the constraint yiA0;1l

to make the problem computationally tractable. It should be noted
that when yj is enforced to be binary, only dictionary bases that are
positively correlated with xi have the chance to be activated to 1.
Thus, we add the non-negative constraint to the relaxed coeffi-
cients to eliminate the negatively correlated bases, which keeps

Fig. 1. Image xq, x1 and x2 are firstly represented in their original space. Then the three images are encoded by the dictionary bases learnt from the training data. Finally, non-
zero coefficients w.r.t. each data point are binarized into 1.
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