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a b s t r a c t

This paper addresses the problem of image denoising in the presence of significant corruption. Our
method seeks an optimal set of image domain transformations such that the matrix of transformed
images can be decomposed as the sum of a sparse matrix of errors and a low-rank matrix of recovered
denoised images. We reduce this optimization problem to a sequence of convex programs minimizing
the sum of the ℓ1 � norm and the nuclear norm of the two component matrices, which can be solved
efficiently using scalable convex optimization techniques. We verify the efficacy of the proposed image
denoising algorithm through extensive experiments on both numerical simulations and different types
of images, demonstrating its highly competent objective performance compared with several state-of-
the-art methods for matrix decomposition and image denoising. Our subjective quality results compare
favorably with those obtained by existing techniques, especially at high noise levels and with a large
amount of missing data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, image restoration has been an important, yet
challenging problem widely studied in computer vision and image
processing. The purpose of image restoration is to “compensate
for” or “undo” defects that degrade an image. Degradation comes
in many forms, including motion blur, noise, and camera misfocus.
In cases like motion blur, it is possible to obtain a very good
estimate of the actual blurring function and “undo” the blur to
restore the original image. However, in cases where the image is
corrupted by noise, the best we can hope to achieve is to
compensate for the resulting degradation. Owing to the ill-posed
nature of image restoration, an image restoration solution is
generally not unique. To find a better solution, prior knowledge
of images can be used to regularize the image restoration problem.
One of the most commonly used regularization models is the total
variation (TV) model [1,2]. Since the TV model favors piecewise
constant image structures, it tends to smooth out the finer details
of an image. To better preserve the image edges, algorithms have
subsequently been developed to improve the TV models [3,4,5].

The success of TV regularization validates the importance of
good image prior models in solving image restoration problems. In

wavelet based image denoising [6], researchers have found that
the sparsity of wavelet coefficients can serve as a good prior. This
implies that many types of signals, e.g., natural images, can be
sparsely represented using a dictionary of atoms, such as discrete
cosine transforms (DCT) or wavelet bases. In addition, recent
studies have shown that iteratively reweighting the ℓ1-norm
sparsity regularization term can lead to better image restoration
results [7]. Sparse representation has been successfully used in
various image processing applications [8,9,10]. However, sparse
decomposition over a highly redundant dictionary is potentially
unstable and tends to generate visual artifacts [11,12]. Recently, a
representative study introduced low-rank matrix recovery (LR)
theory [13] into image restoration. Existing LR-based image
denoising models share a common assumption that an image
can be represented as a highly redundant information part (e.g.,
background regions) plus a main part (e.g., the foreground object)
including several homogeneous regions. The redundant informa-
tion part usually lies in a low dimensional feature subspace, which
can be approximated as a low-rank feature matrix, whereas the
main part can be viewed as a sparse sensory matrix. In this paper,
we introduce a new method, the matrix rank minimization image
restoration algorithm. Our solution builds on recent advances in
rank minimization and formulates the image restoration problem
as a solution that connects low-rank methods with simultaneous
sparse coding. We utilize the low-rank matrix convex optimization
scheme to estimate the local sparsity of the image and adjust the
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sparsity regularization parameters. Extensive experiments on
image denoising show that the proposed approach can effectively
reconstruct the image details.

The remainder of this paper is organized as follows: In Section 2,
we introduce the related matrix rank optimization technique and
an analysis of existing problems. In Section 3, we introduce matrix
rank as a measure of image similarity and reformulate the image
denoising problem as one of matrix rank minimization. In addition,
we propose an efficient algorithm to solve the rank minimization
problem by iterative convex optimization. Experimental results
showing the efficacy of our method on numerical simulations and
different types of images are presented in Section 4.

2. Related work

In recent years, the search for more scalable algorithms for
high-dimensional convex optimization problems has prompted a
return to first-order methods. Principal component analysis (PCA)
is a popular tool for high-dimensional data analysis, with applica-
tions ranging across a wide variety of scientific and engineering
fields. It relies on the basic assumption that the given high-
dimensional data lie in a much lower-dimensional linear subspace.
Correctly estimating this subspace is crucial for reducing the
dimension of the data and facilitating tasks such as processing
[23,29], analyzing [22,28], compressing, or visualizing the data
[14,15]. Suppose that the given data are arranged as columns in a
large matrix, DARm�n. Classical PCA assumes that this data matrix
was generated by perturbing a matrix, AARm�n, whose columns lie
in a subspace of dimension roo minðm;nÞ. In other words,
D¼ AþE, where A is a rank-r matrix and E is a matrix whose
entries are independent and identically distributed (i.i.d.) Gaussian
random variables. In this setting, PCA seeks an optimal estimate of
A, by the following constrained optimization:

min
A;E

‖E‖F ; s:t: rankðAÞrr;D¼ AþE ð1Þ

where ‖U‖F is the Frobenius norm. It is well-known that this
problem can be solved efficiently by simply computing the
singular value decomposition (SVD) of D. The optimal estimate
of low-rank matrix A is simply the projection of the columns of D
onto the subspace spanned by the r principal left singular vectors
of D [16].

Although PCA offers an optimal estimate of the subspace for data
corrupted by small amounts of Gaussian noise, it breaks down
under large corruption, even if that corruption affects only a few of
the observations. This undesirable behavior motivated the study of
the problem of recovering a low-rank matrix A from a corrupted
data matrix D¼ AþE, where some entries of E may be of arbitrarily
large magnitude.

Recently, the authors in [17] showed that under surprisingly
broad conditions, one can recover low-rank matrix A exactly from
D¼ AþE with gross but sparse errors E, by solving the following
convex optimization problem:

min
A;E

‖A‖nþλ‖E‖1 s:t:D¼ AþE ð2Þ

where the nuclear norm ‖U‖n (sum of the singular values of a matrix)
is a convex relaxation of the matrix rank function, ‖U‖1 denotes
l1-norm, which promotes sparsity, and parameter λ40 is a trade-off
between the two items. In [18], this optimization is robust PCA (RPCA),
because it enables one to correctly recover the underlying low-rank
structure in the data, even in the presence of gross errors or outlying
observations. This optimization can easily be reformulated as a semi-
definite program and solved by an off-the-shelf interior point solver.
However, although interior point methods offer superior convergence

rates, the complexity of computing the step direction is Oðn6Þ, and
thus they do not scale well with the size of the matrix.

One striking example of this is the current popularity of
iterative thresholding algorithms for ℓ1-norm minimization pro-
blems arising in compressed sensing [19,20]. Similar iterative
thresholding techniques [21,24] can be applied to the problem of
recovering a low-rank matrix from an incomplete subset of its
entries [25,26,27]. This optimization is closely related to the RPCA
problem, and the convergence proof extends quite naturally to
RPCA. However, the iterative thresholding scheme proposed in
[30] exhibits extremely slow convergence; solving one instance
requires about 104 iterations, each of which has the same cost as
one SVD. Hence, even for matrix sizes as small as 800� 800, the
algorithm requires more than 8 h on a typical PC.

In this paper, our goal is to develop faster and more scalable
algorithms, by further studying the convex optimization problem in Eq.
(2) associated with RPCA and applied to the image restoration problem.

3. Image restoration by matrix rank minimization

In this section, we formulate image restoration as a search for a set
of transformations minimizing the rank of the transformed images,
viewed as the columns of a matrix. We discuss why rank is a natural
measure of image similarity, and how this conceptual framework can
be made robust to gross errors due to corruption or occlusion.

3.1. Low-rank matrix structure and iterative decomposition

Measuring the degree of similarity within a set of images is a
fundamental problem in computer vision and image processing.
Consider matrix XARm�n constructed by stacking all the vectorized
images, denoted by vecðIkÞ, as X ¼ ½vecðI1Þj⋯jvecðInÞ�, where
vecðIjÞ ¼ ½Ijð1Þ;⋯; IjðmÞ�T for j¼ 1;⋯;n. It follows that X can be
factorized as X ¼NL, where N¼ ρ1n1 j⋯jρmnm

� �T ARm�3 and
L¼ ½l1 j⋯j ln�AR3�n. Suppose that the number of images is nZ3.
Irrespective of the size of n, the rank of matrix X is clearly at most 3.

Notions: Let X ¼ ðx1;⋯; xnÞ be an m� n matrix, Ω� 1;⋯;mf g �
1;⋯;nf g denote the indices of the observed entries of X, and Ωc

denote the indices of the missing entries. The Frobenius norm of X
is defined as ‖X‖2F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ði;jÞX

2
ij

q
. Let PΩ be the orthogonal projection

operator onto the span of matrices vanishing outside of Ω so that
the ði; jÞ � th component of PΩðXÞ is equal to Xij when ði; jÞAΩ, and
zero otherwise. Let X ¼ UΣVT be the SVD of X, where Σ ¼ diagðσiÞ,
1o io min m;nf g and σi the i� th largest singular value of X. The
shrinkage operator DT ðXÞ is defined [17] as DT ðXÞ ¼ UΣTV

T , where
ΣT ¼ diagðmax fσi�T ;0gÞ, 1r ir min fm;ng. We summarize the
main result below.

Lemma 1. For a given vector yARn and the thresholding weight
vector wARn

þ þ , the non-uniform singular value operator Sw½y�
satisfies:

Sw½y� ¼ argmin
x

μ

2
‖x�y‖22þ‖w � x‖1

� �
; ð3Þ

where � is the vector of corresponding matrix multiplication
operators, and ‖U‖2 and ‖U‖1 are the ℓ2- and ℓ1-norms, respec-
tively. μ40is the penalty factor. As μ approaches 0, any solution to
Eq. (3) approaches the solution set of Eq. (2). In other words, the
non-uniform singular value operator satisfies:

Sw½y� ¼ Sw0½z� ¼ argmin
x

μ

2
‖x�z‖22þw0‖x‖1

� �
; ð4Þ

where z¼ signðyÞ � ð y
�� ��þw01�wÞ, w0 ¼ maxðfwigÞ,

y
�� ��¼ signðyÞ � y, and vector 1ARn with all elements equal to 1.

Proof. For any element of vector y,

Swi ½yi� ¼ argmin
xi

μ

2
‖xi�yi‖22þwi‖xi‖1

� �
; ð5Þ
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