
Designing virtual bots for optimizing strategy-game groups

Manuel G. Bedia a, Luis Castillo b,c,n, Carolina Lopez a, Francisco Seron a, Gustavo Isaza c

a Department of Computer Science, University of Zaragoza, Spain
b Department of Industrial Engineering , National University of Colombia (Manizales), Colombia
c GITIR group, Engineering Technical Faculty, University of Caldas, Colombia

a r t i c l e i n f o

Article history:
Received 22 September 2014
Received in revised form
28 April 2015
Accepted 5 May 2015
Available online 5 August 2015

Keywords:
Genetic algorithms
Swarming
Videogames

a b s t r a c t

In the last decade, a permanent increasing in the popularity of videogames has happened. As the cost of
the computational power has decreased, graphic games more realistic have been developed. However,
although everybody in this industry knew that an intelligent and believable behavior of bots (or, in
general, non-playing characters) is an important key to make a game fun to play, the experts have not
showed real interests in this issue until recently. In this paper, we propose how a good strategy for
optimizing the behavior of a team of bots (with roles between members and communication skills
between each other) in the “capture the flag game” domain, could be designed and analyzed using a
combination between swarming optimization techniques and mathematical analysis based in Markov
models in order to improve the standard strategies that videogames use. This domain presents a
particular case of the “exploration vs. exploitation” dilemma, a paradox that appears in numerous
situations where systems needs being adaptable and learnable at the same time and solutions of the
dilemma are built evolving balances between parts. The environment used to test the proposed model
will be the Unreal Tournament virtual world.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Videogames offer new environments for artificial intelligence
(AI) technology and research. Over the last few years the video-
game world has become a huge industry and the use of AI
techniques to improve NPC behaviours have become increasingly
more important to make smart and fun games [1]. Currently, it is
completely assumed by the videogame research community that
Artificial Intelligence is going to become the core issue in creating
realistic experiences in a next generation of video and computer
games. The experts in this field assume that future videogames
will be characterized by showing novel situations where bots
exhibit changing and unpredictable behaviors keeping the inter-
ests in the game during long time. It implies to focus on AI
techniques that allow us to design a new generation of behaviors
in bots. In this paper, we are interested in a game known as
“Capture the Flag” that appears in numerous gaming platforms
and that consists in a strategy game where players compete to
capture the other team's flag and return it to their base.

In order to implement a successful strategy, competitive teams
must use a great deal of team-play to generate the combination of
individual behaviors that generate a solution in a whole level.

From our point of view, the challenge is a particular case of the
well-known “exploration vs. exploitation” dilemma – a recurrent
paradox that emerge in all systems that try to get a balance
between two types of incompatible behaviors. In this paper, we
will propose how to design a group strategy that models the
behavior of a team-play in a this videogame platform.

The paper is structured as follows: In Section 2 a brief overview is
given on the Unreal Tournament platform and the Pogamut game-
tool, together the reasons why these platforms have been chosen for
this research. In Section 3, a combination between Markov chain and
genetic algorithm model will be used in order to model (i) the
behavior of an individual bot, and (ii) a group strategy of a team of
bots where the exploration/exploitation dilemma should be dealt.
Furthermore, it will be explained the methodology used in this
research: (i) how the optimization strategies will be outlined; (ii) and
an in-depth description of the genetic algorithm model and how it
works will be explained. In Section 4, the set of experiments that
have been done with the algorithms described in the previous
section and the parameter settings will be detailed, and after that,
the results of the experiments will be discussed. Finally, in Section 5,
the most important conclusions will be remarked.

2. Experimental settings and approaching to the problem

Unreal tournament 2004 (developed by Epic Games Inc.) is the
name of a very famous First Person Shooter multi-player game

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.05.118
0925-2312/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: mgbedia@unizar.es (M.G. Bedia),

luis.castillo@ucaldas.edu.co (L. Castillo), c.lopez@unizar.es (C. Lopez),
seron@unizar.es (F. Seron), gustavo.isaza@ucaldas.edu.co (G. Isaza).

Neurocomputing 172 (2016) 453–458

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.05.118
http://dx.doi.org/10.1016/j.neucom.2015.05.118
http://dx.doi.org/10.1016/j.neucom.2015.05.118
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.118&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.118&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.118&domain=pdf
mailto:mgbedia@unizar.es
mailto:luis.castillo@ucaldas.edu.co
mailto:c.lopez@unizar.es
mailto:seron@unizar.es
mailto:gustavo.isaza@ucaldas.edu.co
http://dx.doi.org/10.1016/j.neucom.2015.05.118


where the player has to fight enemies that can be controlled by the
computer (i.e. bots) or by other human players in a network
structure [2]. Although the engine of Unreal tournament 2004 (UT
2004) is neither completely open nor available for researching, the
advantage is that the behavior of the virtual bots (path planning
algorithms, routines for moving, attacking, etc.) can be implemen-
ted through a platform known as Pogamut. Pogamut is a Java
middleware that provides an API to control bots [3]. Most research
groups and several experiments have been developed in academic
environments using Pogamut (for instance, in Genetic Bots [4],
StorySpeak [5], Emohawk [6], etc.). In Fig. 1, readers can see a
diagram of the architecture of Pogamut.

In order to explore how to design intelligent strategies of a
group of bots, we have chosen the mode named “Capture the
Flag”, a version in which different teams have to capture the
enemy flag from the opponents’ base. In this mode, bots must
solve tasks they know how to deal, but on the other hand, they
should try to discover new possibilities. If bots focus on the first
aspect, they only exploit the information available with difficulties
to be adaptable to new situations. For that reason, the ideal
behavior will be structured by a balance between two opposite
strategies. Traditionally, the problem of finding a balance between
these two factors has been called the “exploration–exploitation”
dilemma (EE). Some authors have remarked that different versions
of this dilemma appear in different engineering domains [7].

There are different ways in which the behavior of a bot can be
programmed. One of the most basic alternatives is to program it by
using if–then structures. Here, the programmers should know a
priori a large list of possible situations to implement them, but
bots are not going to change its predefined behavior so they
cannot deal any unforeseen situations. In particular, and related to
our interests in this paper, there exist multiple experiences of
using genetic algorithms to let virtual bots learn different tasks
and perform different tasks. For instance, in [8] genetic algorithms
were used to tune Counter Strike bot behavior and to calculate
efficient paths between two endpoints in a landscape; in [9]
genetic algorithms were chosen to evolve scripts to solve various
tasks in Lemmings; in [10] they were used for implementing
pathfinding techniques; in [11] to implement virtual entities and
to define both their morphology and the neural circuitry involved,
etc. In this paper, we will use them to create a team of bots with
capabilities to solve the problem of “capturing the flag”, using
techniques of long-distance communication, genetic algorithms
tools and Markovian chain notions.

2.1. Towards a model adapted to the problem

Multiagent systems (MAS) paradigm is generally considered to
be the most adequate paradigm for modeling collective systems.
Although being recognized as only one, MAS models capture
collective strategies from different perspectives. In general terms,
whereas traditional multi-agent systems have the agent in the
middle of the model, self-organizing models are focused more on
the organization of the system, allowing the designer to focus on
the goals without considering how the goals should be fulfilled
(eg. using genetic algorithms). The classical, agent-centered sys-
tem and the organization-centered system, where the organiza-
tion of the system is modeled (and the role of each agent is
generated in a natural way under particular constraints) are the

options that a programmer can use for modeling teamwork
strategies. When the system has a high structural complexity,
there are greater advantages of dividing the implementation into
two distinct parts. Sometimes the two approaches overlap. The
reason is that there will always be situations where it is not clear
whether one system is an advantage over the other. In the
videogame field, there is no definite answer to whether using
one or other approach would be better. In such situations it is
important to realize how complex the game is. If the game consists
of one well-defined type of controllable character, a self-
organizing model is probably not the best choice. However, the
unreal environment is a very open context and we propose in this
paper to take the organizational approach. As we will see below,
the resulting agents react quite fast to changes in the environ-
ment; with short code and only few precisely defined responsi-
bilities. The agents are also able to cooperate in fulfilling their
mission.

3. Mathematical model

This project deals with the implementation of a genetic algo-
rithm to optimize the performance of a group of bots in the
“capture of the flag” game. The experiment takes place in a
scenario where the goal of each team is, firstly, finding the flag
and then stand up waiting for the rest of the members to travel
where the flag is placed (Fig. 2a). Bots are unable to perform both
tasks simultaneously, therefore, we find a particular instance of
the exploration–exploitation dilemma explained above. In our
approach, the bots of the group have exactly the same character-
istics and have the same objective (capturing the flag). However,
the variable that characterizes the amount of time that the bot
spend in “exploration tasks” vs “the exploitation stage” can be
different in every member of the team (it is just this rate of both
processes the parameter that will be optimized). All the bots
present two regimes of behavior: an exploration phase (or “listen-
ing phase”, i.e., how much time the bot spends searching or
exploring), and (ii) an exploitation phase (or “roving phase”, i.e.
how much time should the bot be exploiting information in a
dynamic environment). In order to be able to optimize these type
of bots, some sort of indicator (a measurement that calculates the
rate between stages) is needed. We have defined a parameter
called index of hyperactivity (“Ih” ) defined as the percentage of
time that a bot is moving (with a value that goes from 0 to 1, with
reference to a bias unit of time Tc that characterizes the minimum
time interval in both states). In this sense, we have (i) a bot-time
for roving: Ih � Tc (ii) a bot-time for listening: ð1� IhÞ � Tc .

In every cycle (again limited by Tc), every bot can walk around
the map totally randomly if its status is “roving”. Otherwise, in the
“listening” stage, the bot stops and waits any information (from
other bots) about where the flag is. As we can easily deduce, only
two factors can be the dependence variables that guarantee the
success of a strategy: (i) The individual probability of any bot to
find the flag; (ii) The structure of the team and their communica-
tion dependencies. The objective of this model is to validate a
model that tries to deal successfully with the EE dilemma, study-
ing the behavior of different alternatives as they can affect directly
to the future creation of intelligent strategies in videogame
domains.

3.1. First part: how to model an individual bot

In general terms, the global probability for finding the flag will
be a general mapping:

PðflagÞ ¼ pðx0;N; IhÞ

Fig. 1. Pogamut architecture (with UT2004) (source: Pogamut documentation).

M.G. Bedia et al. / Neurocomputing 172 (2016) 453–458454



Download English Version:

https://daneshyari.com/en/article/409052

Download Persian Version:

https://daneshyari.com/article/409052

Daneshyari.com

https://daneshyari.com/en/article/409052
https://daneshyari.com/article/409052
https://daneshyari.com

