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Abstract

In this paper, an original method extended from growing neural gas (GNG-T) [B. Fritzke, A growing neural gas network learns

topologies, in: G. Tesauro, D.S. Touretzky, T.K. Leen (Eds.), Advances in Neural Information Processing Systems 7, MIT Press,

Cambridge, MA, 1995, pp. 625–632] is presented. The method performs continuously vector quantization over a distribution that

changes over time. It deals with both sudden changes and continuous ones, and is thus suited for the video tracking framework, where

continuous tracking is required as well as fast adaptation to incoming and outgoing people. The central mechanism relies on the

management of the quantization resolution, that copes with stopping condition problems of usual GNG inspired methods. Application

to video tracking is presented.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Unsupervised learning consists in mapping the distribu-
tion of some phenomenon with some reduced information,
like principal components in principal components analysis
(PCA) for example. In this paper, analysis by vector
quantization (VQ) is rather addressed. This consists in
finding a finite set of vectors that are located in order to
cover places where the phenomenon happens. Representing
an unknown continuous density probability function by
few vectors reduces the information and allows us to
analyze, compress or represent the complexity of the
problem.

In this paper, that is an extended version of [4],
unsupervised learning by VQ is applied to non-stationary
distributions, which requires to adapt the usual techniques
to this issue. The problem with non-stationary distribu-
tions is that the process should keep a high level of
plasticity, in order to adapt to sudden changes, as well as
being able to stabilize on constant or smoothly changing
parts, which rather requires stability. The algorithm
proposed here deals with both these features, and can thus

be applied to video scene analysis, since objects in a scene
can appear, disappear, move continuously or just be
motionless.

2. VQ and non-stationary distributions

Since a decade, many methods have been proposed for
VQ. Some of them are related to information theory and
signal processing, as reviewed in [27], but more recent ones
deal with the mapping of a distribution by a finite set of
vectors that try to cover at best a continuous probability
density function. These latter are reported in [3,16]. Let us
first sketch the basic elements of any VQ procedure, and
then show how it has been extended to deal with non-
stationary distributions.

2.1. VQ basics and notation

In order to introduce VQ, let us recall some of its
features and define some notations as in [8]. Let x 2 X be a
sample of an unknown distribution PX over space X,
according to a stationary density of probability pðxÞ. VQ
consists classically in finding a discrete set wif g1pipn � X of
prototypes such that this set ‘‘matches’’ PX . The so-called
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neuron i is the computational element that gathers
information related to the wi prototype. Let wðxÞ be
argminwi

dðx;wiÞ, where d is some proximity function
(usually dðx;wiÞ ¼ kx� wik

2), less restrictive than pure
distances, returning low values for similar arguments and
higher values for less similar arguments. The quality of the
fitting depends on how well the prototypes wif g are
scattered over the distribution. More formally, this
scattering has to minimize distortion defined in Eq. (1),
where Vi is the Voronoı̈ cell around wi (i.e. the region in
space where points are closer to wi than to any other wj).
The V is form a partition of X.

E ¼

Z
X

dðwðxÞ; xÞpðxÞdx ¼
Xn

i¼1

Ei, (1)

where Ei ¼
R

Vi
dðwi; xÞpðxÞdx and V i ¼ fx 2 X :wðxÞ ¼ wig.

The minimization of E is performed by successive stages,
until some stopping condition is met. Some methods
proceed minimization from a given finite set of examples,
chosen from PX , and minimize the distortion measured on
this set [15,11]. Some other methods work on-line, since
examples are provided continuously. In this latter case, at
each stage, an input x is first chosen, according to PX .
Second, the so-called winner-take-all procedure (WTA)
allows to determine the winning prototype wi1 ¼ wðxÞ.
Third, wi1 is modified so as to be closer to x.

The previous procedure describes the reduction of
distortion by placing vectors in the input space. For many
algorithms in the literature, the feature of topology
preservation is also addressed. This consists in endowing
the prototypes with a graph structure, that defines a
neighborhood relation between them. Preserving topology,
roughly speaking, means ensuring that two prototypes that
are close in the graph are also close according to the metrics
d in the input space. Early self-organizing maps by Kohonen
[14] have this feature since they try to map an a priori graph
(usually a grid) to the distribution in the input space. This
distribution can have a dimension higher than two. In this
case, the resulting grid of prototypes is distorted to fit the
distribution. The work presented here is rather inspired by
the growing neural gas (GNG) algorithm by Fritzke [6] since
it adapts to the actual topology of the distribution by
building a suited graph with the prototypes. This prevents
from distorting an arbitrary low dimension graph (as a grid)
if some higher dimension connectivity is needed. The idea is,
each time an example is given, to link the two best matching
prototypes. This method, called competitive Hebbian
learning (CHL), has been introduced by Martinez and
Schulten. Authors have demonstrated that it builds a graph
that approximates the Delaunay triangulation of the
prototypes [17]. One other interesting feature of GNG is
its incremental nature. Each prototype wi has an accumula-
tion variable with it that measures the sum of the errors wi

makes when it actually wins. This accumulated value is used
to add neurons where quantization is not accurate enough
(i.e. local distortion is too high).

Accumulation of local error, an incremental algorithm,
and CHL are of primary relevance in our approach, that
directly inherits these features from the GNG algorithm.
Some refinements have been proposed in the literature, in
order to accelerate the growing of the network [24] or
manage the unstability induced by outliers in the distribu-
tion [23]. Some other approaches modulate the spatial
sensitivity of a prototype, using some variable radius
receptive field, to allow different accuracies in the network
[1]. In this latter case, adaptation and growth is driven by a
value that is a goal to be reached by local errors. Such a
criterion is very close to the target that is used to drive the
growth of our algorithm.
Last, in [24], the preservation of topology is analyzed

numerically. The authors stress that, for a given distribu-
tion, the quality of the topology preservation increases with
the number of prototypes until some bound is reached.
More prototypes, then, will not improve the preservation.
This bound depends on the probability density function p

itself, and it may differ drastically from one distribution to
another. This is why setting in advance the number of
prototypes is difficult, and difficulty increases if the
distribution is subject to change with time. This is why,
as explain in next section, controlling continuously the
number of prototypes is the main difficulty when using VQ
for non-stationary distributions.

2.2. Endowing VQ with the ability to track non-stationary

distributions

As explained in [8], algorithms whose plasticity decreases
with time, as for example the self-organizing maps, are not
suitable for non-stationary distributions. What is less
intuitive is that even incremental neural networks, where
all parameters are constant, encounter difficulties when fed
with changing distributions. They are actually able to
create new prototypes if needed, but the problem is that
some neurons may become useless (dead units) in case of a
sudden change. So the challenge is to exploit the properties
of algorithms like GNG, while controlling the additions
and removals of neurons, in order to stick to the changes in
the distribution. This requires computing some kind of
statistics for each prototype, in order to detect when it
needs to have one more neighbor or, rather, that it needs to
be removed.
Let us first consider the problem of removing useless

prototypes. Some utility measure has proposed by Fritzke
[7], and adapted to GNG [8]. The resulting GNG-U
algorithm uses two accumulators for each prototype. One
accumulator stores the sum of errors made when the
prototype actually wins, as in GNG. The second stores the
‘‘utilities’’ of a prototype when it wins as well. This utility is
the difference between the error made by the second closest
prototype and the error made by the winning prototype
itself. If this is low, it means that if the winning prototype
were missing, distortion would have been approximately
the same. Both accumulators for all prototypes are subject
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