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Abstract

The impact of stability and synchronization of electrical activity on the structure of random brain networks with a distribution of

connection strengths is investigated using a physiological model of brain activity. Connection strength is measured by the gain of the

connection, which describes the effect of changes in the firing rate of neurons in one component on the neurons of another component.

The stability of a network is calculated from the eigenvalue spectrum of the network’s matrix of gains. Using random matrix theory, we

predict and numerically verify the eigenvalue spectrum of randomly connected networks with gain values determined by a probability

distribution. From the eigenvalue spectrum, the probability that a network is stable is calculated and shown to constrain the structural

and physiological parameters of the network. In particular, stability constrains the variance of the gains. The complex vector of

component amplitudes, or mode, corresponding to each dispersion root is an eigenvector of the network’s gain matrix and is used to

calculate the synchronization of each component’s electrical activity. Synchronization is shown to decrease as the variance of the

connection gain increases and inhibitory connections become more likely. Brain networks with large gain variance are shown to have

multiple eigenvalues close to the stability boundary and to be partially synchronized. Such a network would have multiple partially

synchronized modes strongly excited by a stimulus.
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1. Introduction

Analysis of large-scale brain structure has shown that the
brain is an interconnected network of neuronal popula-
tions with distinct anatomical characteristics. A number of
experimentally determined connection networks for animal
cortices have been published [18,19,23,47,59] showing that
connections between brain components are not random
but have a hierarchical structure with properties similar to
those of small world networks [3].

The physical and evolutionary reasons for the brain to
display this type of network structure have yet to be
explained fully. A number of studies have shown that brain
networks may have evolved so that the ‘‘cost’’ of wiring the
connections between components, such as the volume of
axons and dendrites, is minimized [7–9]. However, a recent
study has shown that neural systems are not exclusively
optimized for minimal global wiring but for a variety of
factors including the minimization of processing steps [25].
An information theoretic approach has also been used
[50–52] to study cortical network connectivity. By search-
ing for networks that maximized a complexity measure
connection matrices with similar properties to experimen-
tally determined cortical networks were generated [52,55].
However, as noted in [52], this shifts the question from why
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the brain has this structure to why the brain maximizes this
complexity measure.

The study of brain networks is part of the wider study of
complex networks, which have been investigated exten-
sively in years, see [3] for an extensive recent review. The
main focus of this research has been on the structural
properties of networks; however, a number of studies have
recently looked at the dynamics of complex networks,
including randomly connected networks [26,45,60].
Though the structure of brain networks, particularly
cortical networks, has been widely analyzed, there has
been little research on the dynamics of these networks
using physiologically based models. Complementing the
previous studies of brain network structure, we study brain
networks using a physiologically based model of the brain’s
electrical activity. Our aim is to investigate the dynamics of
networks of brain components with the goal of finding
physical constraints on their possible structure.

Physiologically based modelling of the brain’s electrical
activity in recent years [6,41,43] suggests that an important
constraint on brain structure is the linear stability of the
electrical activity of the brain in response to an external
input. If the brain is unstable, an input would lead to a
continual increase in electrical activity, likely resulting a
disorder. For example, there is evidence that instabilities in
the corticothalamic system correspond to epileptic seizures
[6,41,43,39]. It is possible that a linear instability leads to a
stable nonlinear state (e.g., a limit cycle). However, this is
not necessarily the case and requires study in the nonlinear
regime to determine in general. Another important linear
property is the synchronization of activity between brain
structures. In epilepsy, synchronization increases between
different cortical areas before and during seizure [53], and
structures in the basal ganglia become more synchronized
in Parkinson’s disease [5,48]. Synchronization between
different regions in the visual cortex is also argued to be
involved in the binding problem [46].

Previously, we applied a physiological model to
randomly connected excitatory brain networks and showed
that stability constrains their physiology and structure [16].
That work only considered networks with a constant
excitatory gain. Here, we extend that work by letting the
gain vary within a network. The gain of a connection is
determined by a probability distribution that allows the
possibility of inhibitory connections. We also investigate
the synchronization of the electrical activity of the
components in a brain network. Even though large-scale
brain networks are known to have a specific nonrandom
connectivity, it is useful, as discussed in [13], to explore the
stability and synchronization of randomly connected
networks. First, we can obtain insight into why evolution
selected a particular connectivity in the brain out of the
space of all possible connectivities. Alternatively, we can
interpret randomly connected networks with a distribution
gain value to be networks with random or fluctuating
interactions and we can investigate how the stability and
synchronization of a network change as the input into each

component fluctuates over time. Section 2 describes the
representation of brain networks using directed networks
and their corresponding connection matrices. The simple
physiological model used to describe the dynamics of a
brain network is presented in Section 3. A central role is
played by the gain matrix of a brain network. In Section 4,
we describe the important features of the gain matrix of a
brain network and explain how the stability and synchro-
nization are determined from its eigenvalues and eigenvec-
tors. Using random matrix theory, we predict the
eigenvalue distribution of brain networks with arbitrary
connection distribution and arbitrary gain distribution in
Section 5. These predictions are confirmed in Section 6 for
randomly connected brain networks with similar para-
meters to experimentally determined brain networks and
normally distributed gain. The stability and synchroniza-
tion of these networks as the gain variance changes are
presented in Section 7. Finally, results for the spectral
distribution and synchronization of brain networks with
fixed randomly generated connections and gains are
presented in Section 8.

2. Brain networks

A brain network of n neuronal populations is repre-
sented here by a directed graph N and its corresponding
connection matrix CðNÞ ¼ ½Cij�. Each vertex represents a
specific neuronal population or brain component and an
edge in the graph signifies a connection from one
component to another along which an electrical signal is
sent. The neurons constituting each component can belong
to physically distinct regions of the brain, for example the
visual and motor cortices, or can be intermixed with the
neurons of another component such as the excitatory and
inhibitory neurons in the cortex. If there is a connection
from component j to component i, then Cij ¼ 1 and if there
is no connection Cij ¼ 0. If Cij ¼ Cji for all i and j we say
that the network is symmetric; otherwise it is asymmetric.
When Cij ¼ Cji, then components i and j are reciprocally,
or symmetrically, connected. The fraction of connections
for which a reciprocal connection exists will be denoted by
the parameter q. In this work, we consider the stability of
brain networks with randomly connected components and
0pqp1. The probability of an edge existing between
components is denoted by p. When p ¼ 0, the network has
no connections and when p ¼ 1, the network is fully
connected. In our analysis, we focus on networks that are
strongly connected [4], ignoring networks that are made up
of disconnected portions. This ensures that all the vertices
in a network have at least one input and one output; i.e.,
there are no ‘‘sources’’ or ‘‘sinks’’ of electrical activity. If

p4ð5þ ln nÞ=n, (1)

then a randomly connected network will almost surely be
strongly connected [4]. In this work, we use values of p that
satisfy Eq. (1) to ensure strong connectivity.

ARTICLE IN PRESS
R.T. Gray, P.A. Robinson / Neurocomputing 71 (2008) 1373–13871374



Download English Version:

https://daneshyari.com/en/article/409143

Download Persian Version:

https://daneshyari.com/article/409143

Daneshyari.com

https://daneshyari.com/en/article/409143
https://daneshyari.com/article/409143
https://daneshyari.com

